

Two loop Higgs masses beyond the MSSM

Mark D. Goodsell

LPTHE

[MDG, K. Nickel and F. Staub, 1411.0675,1411.4665, ...] [MDG, P. Slavich in progress]

- Why go beyond the MSSM?
- Why calculate higher order corrections?
- Two loop Higgs mass in the effective potential approach
- Implementation in SARAH 4.4
- Results for the NMSSM
- Future direction

Experimental precision vs. theory precision

Consider the current experimental accuracy of the Higgs mass measurement:

 $\begin{array}{c|c} \mathsf{CMS} \; [\mathsf{CMS}\text{-}\mathsf{PAS}\text{-}\mathsf{HIG}\text{-}14\text{-}009] \\ \mathsf{Atlas} \; [\mathsf{PRD} \; \mathsf{D} \; \mathbf{90}, 052004 \; (2014)] \end{array} \left| \begin{array}{c} 125.03 \substack{+0.26 \\ -0.27 \\ 125.36 \\ \pm \end{array} \left(\text{stat.} \right) \substack{+0.13 \\ -0.15 \\ 0.37 \; (\text{stat.}) \\ \pm 0.18 (\text{syst.}) \; \mathsf{GeV} \end{array} \right.$

Gives an error of a few hundred MeV.

Compared to, in the MSSM:

- $\mathfrak{m}_h(\mathsf{tree}) \leqslant M_Z$
- $\delta m_h^2(\text{loops}) \geqslant (86 \text{GeV})^2 \gtrsim m_h^2(\text{tree})$
- Can have δm_h (two loops) $\lesssim 10 \text{ GeV} \rightarrow \delta m_h^2$ (two loops) $\sim 15\% m_h^2$!
- While at three-loop order , have $\delta m_h \sim$ few hundred MeV,

 $\rightarrow \delta m_h^2(\text{three loops}) \lesssim 1\% m_h^2$

Not all two and three-loop corrections are known for the MSSM, but clearly the two loop corrections are particularly important for ruling models in/out/parameter extraction.

Calculations in models beyond the MSSM

There is now a large literature on precision calculations in the MSSM, too large to give references.

Up until recently, the rare models beyond the MSSM were limited to the NMSSM:

- [Degrassi and Slavich, 2009] calculated the complete one-loop corrections in the NMSSM, and the two-loop corrections proportional to $\alpha_s \alpha_t$, $\alpha_s \alpha_b$ in the effective potential approach.
- NMSSMTools, NMSSMSOFTSUSY implemented these and included the <u>MSSM</u> corrections proportional to the Yukawa couplings in the third family for the MSSM-like Higgs pairs.
- Recently [Muhlleitner, Nhung, Rzehak, Walz, 2014] calculated the α_sα_t, α_sα_b corrections for the CP-violating NMSSM at zero external momentum and will implement these in NMSSMCALC.

For other models, the only possibility was and is SARAH:

• Calculates RGEs, full one-loop masses for all sparticles including momentum dependence, generates code for SPheno, MicrOMEGAs, MadGraph, ...

I will discuss how we have implemented the two-loop Higgs mass calculation in SARAH.

SARAH: a tool for BSM model builders

So what is $\ensuremath{\mathsf{SARAH}}$?

- Mathematica package written by F. Staub (with now some contributions from K. Nickel and MDG).
- Takes an input model file for any SUSY or non-SUSY model.
- Specify: gauge groups, matter content, superpotential/couplings in Lagrangian.
- Relevant for this talk: spectrum generation with SPheno.
 Produces fortran code which compiles against the SPheno library to generate spectrum and precision observables etc for the model.
- Will calculate two-loop RGEs, one-loop masses in DR' (SUSY) or MS (non-SUSY) models. This is crucial in the following.
- Can specify input parameters at any scale: TeV, SUSY scale, GUT scale ...

Calculation of the Higgs mass in the effective potential approach

The Higgs mass is corrected order by order through two effects:

1. Self energy corrections

$$\mathfrak{m}^2(p^2) = \mathfrak{m}^2(\mathsf{tree}) - \Pi(p^2)$$

2. Shifts to the tadpole conditions:

$$\begin{split} V = & V^{\text{tree}} + \Delta V \equiv \frac{1}{2} m_0^2 \nu^2 + V_{\lambda}^{\text{tree}} + \Delta V \\ \rightarrow 0 = & m_0^2 \nu + \left(\frac{\partial V_{\lambda}^{\text{tree}}}{\partial \nu} + \frac{\partial \Delta V}{\partial \nu} \right) \end{split}$$

If we take ν as fixed to all orders we must shift $m^2(\mathsf{tree})$ so that

$$\rightarrow m^{2}(\text{tree}) = \frac{\partial^{2} V^{\text{tree}}}{\partial v^{2}} - \frac{1}{v} \frac{\partial \Delta V}{\partial v}.$$

One significant simplification to calculations is to take $p^2 = 0$; this is then equivalent to taking

$$\Pi(\mathbf{0}) = -\frac{\partial^2 \mathbf{V}}{\partial \nu^2}.$$

Two loop calculations in general theories

While explicit calculations for specific models have been restricted to the (N)MSSM, S. Martin in a series of pioneering papers has calculated two loop corrections in general renormalisable field theories. Amongst other papers:

- [S. Martin, 01] : general two loop effective potential in Landau gauge.
- [S. Martin, 02] : two papers on the effective potential of the MSSM and the Higgs mass.
- [S. Martin, 03] : pole masses for scalars.

We made heavy use of these results.

Goldstone boson catastrophe

One of the problems suffered in [S. Martin, 02] was the "Goldstone boson catastrophe:"

 In the Landau gauge the longitudinal components of the W and Z bosons are massless. Write

$$V \equiv V^{\text{tree}}(\nu^2 + G^2) + \Delta V$$

$$m^2(\text{Goldstone}) = 0 = \underbrace{\frac{1}{\nu} \frac{\partial V^{\text{tree}}}{\partial \nu}}_{\text{tree-level mass-squared}} + \frac{\partial^2 \Delta V}{\partial G^2} = -\frac{1}{\nu} \frac{\partial \Delta V}{\partial \nu} + \frac{\partial^2 \Delta V}{\partial G^2}$$

- The "tree-level" mass-squared for the would-be Goldstone boson is then generically non-zero and is what enters into the two-loop functions.
- Through RGE running this mass-squared can change sign while the potential is well defined at two loops some derivatives of loop functions are singular!
- While there are solutions for computing the tadpoles (see [S. Martin, 14] and [Elias-Miro, Espinosa, Konstandin, 14]) they suggest the full solution for masses is to compute the pole mass at non-zero momentum.

MSSN

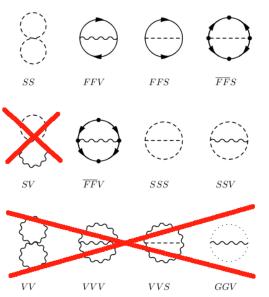
Gaugeless limit

An alternative simplification – at least for the (N)MSSM – is to go to the "gaugeless limit": neglect the contribution of all broken gauge groups, and treat the would-be Goldstone bosons as actual Goldstone bosons!

- In the MSSM, this kills the tree-level quartic coupling, so the derivatives of the Goldstone masses w.r.t. the Higgs are zero → we do not introduce singularities in the derivatives of the potential.
- In general, the electroweak bosons have a large effect on the would-be Goldstone boson "tree-level" mass, so killing these terms simplifies or removes the problem.
- These contributions have been estimated to be of the order of hundreds of MeV in the MSSM, so are generally small.
- The two-loop calculations are greatly simplified.
- In our approach, we actually use the tree-level masses in the gaugeless limit to compute the two-loop corrections (we solve first for the full tadpole equation, and then compute the Goldstone masses with zero gauge couplings).
- In the (N)MSSM we therefore find for the neutral Goldstone boson $\frac{\partial^2 V^{\text{tree}}}{G^2} = -m_Z^2 \cos^2 2\beta.$

Diagrams

Here is the set of two-loop diagrams we consider (mangled from [S. Martin, 01])



Two-loop calculation

Three methods of mass calculation:

- 1. Calculate the effective potential and numerically take the first and second derivatives. This was advocated for the MSSM in [S. Martin, 02] .
- 2. Numerically take the derivatives of the parameters entering the potential, and use analytic expressions for the derivatives of the loop functions themselves, e.g.

$$\begin{split} V^{(2 \text{ loop})} \supset &\sum_{ijk} (\lambda^{ijk})^2 f_{SSS}(\mathfrak{m}^2_i, \mathfrak{m}^2_j, \mathfrak{m}^2_k) \\ \rightarrow & \frac{\partial V^{(2 \text{ loop})}}{\partial \nu} \supset \sum_{ijk} 2\lambda^{ijk} \frac{\partial \lambda^{ijk}}{\partial \nu} f_{SSS}(\mathfrak{m}^2_i, \mathfrak{m}^2_j, \mathfrak{m}^2_k) \\ &+ 3(\lambda^{ijk})^2 \frac{\partial f_{SSS}(\mathfrak{m}^2_i, \mathfrak{m}^2_j, \mathfrak{m}^2_k)}{\partial \mathfrak{m}^2_i} \frac{\partial \mathfrak{m}^2_i}{\partial \nu} \end{split}$$

3. Use analytic expressions for the derivatives, equivalent to a diagrammatic calculation.

The first two methods are currently implemented in the public version of SARAH. The third method is in beta testing; it will be announced along with the analytic expressions in a paper soon.

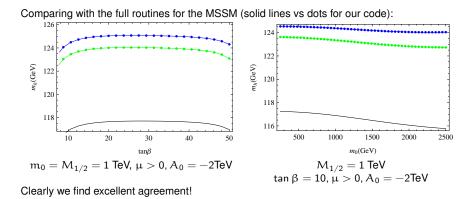
Validation

To validate our code we compared with

- $\alpha_s \alpha_t$ corrections in the MSSM
- Full $\alpha_s(\alpha_t + \alpha_b) + (\alpha_t + \alpha_b + \alpha_\tau)^2$ MSSM results in the tools of P. Slavich.
- $\alpha_s \alpha_t$ corrections in the NMSSM by P. Slavich.
- $\alpha_s \alpha_t$ corrections in Dirac gaugino models by MDG and P. Slavich (currently private code, will be made available in SARAH in future).

These are the only examples available!

Comparison plots for the CMSSM



Results for the NMSSM

Shall consider the NMSSM with \mathbb{Z}_3 symmetry:

$$W = \lambda SH_{d} \cdot H_{u} + \frac{\kappa}{3}S^{3}$$

In the past, since only incomplete results were available, the best approach was to combine the NMSSM $\alpha_s\alpha_t$ results with the MSSM Yukawa couplings:

$$\begin{split} \Delta M^2(\text{two loops}) &\sim & \alpha_s \left(\alpha_t + \alpha_b \right) \left(\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right) \\ &+ & (\alpha_t + \alpha_b + \alpha_\tau)^2 \left(\begin{array}{ccc} \Delta M_{11}^2(\text{MSSM}) & \Delta M_{12}^2(\text{MSSM}) & 0 \\ \Delta M_{21}^2(\text{MSSM}) & \Delta M_{22}^2(\text{MSSM}) & 0 \\ 0 & 0 \end{array} \right) \end{split}$$

- We can now check the validity of this approximation.
- Of course, expect that the approximation is only useful for the non-singlet-like Higgses.

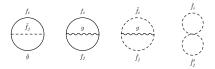
MSSM

NMSSM

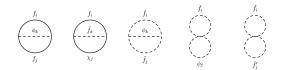
Conclusions

Diagrams

The diagrams already computed:



MSSM-like diagrams:



New diagrams computed for the first time by our code:

MSSN

NMSSM

Conclusions

Heavy singlet case

When the singlet-like Higgs is heavier than 125 GeV and λ is moderate, find small corrections from the Yukawa-coupling part:

$$\begin{split} m_0 &= 1.4 \text{ TeV} ~~ M_{1/2} = 1.4 \text{ TeV} ~~ \tan\beta = 2.9 ~~ A_0 = -1.35 \text{ TeV} \\ \lambda &= 0.56 ~~ \kappa = 0.33 ~~ A_\lambda = -390 \text{ GeV} ~~ A_\kappa = -280 \text{ GeV} ~~ \mu_{\text{eff}} = 200 \text{ GeV} \end{split}$$

	Tree	one-loop	two-loop $(\alpha_s(\alpha_b + \alpha_t))$	full two-loop
\mathfrak{m}_{h_1}	93.8	117.6 (+ 25.4%)	126.1 (+7.2%)	124.7 (-1.1%)
\mathfrak{m}_{h_2}	214.5	209.2 (-2.4%)	209.2 (± 0%)	208.7 (-0.2%)
\mathfrak{m}_{h_3}	555.5	541.9 (-2.4%)	542.3 (+0.1%)	541.4 (-0.2%)

NB the second Higgs h_2 is mostly singlet-like, with the MSSM-like heavy Higgs being the heaviest (h_3).

Here the approximation works well.

Large λ

$$\lambda = 1.6 \qquad \kappa = 1.6 \qquad \tan\beta = 3 \qquad T_{\lambda} = 600 \text{ GeV} \qquad T_{\kappa} = -2650 \text{ GeV} \qquad \mu_{\text{eff}} = 614 \text{ GeV}$$

	Tree	one-loop	two-loop $(\alpha_s(\alpha_b + \alpha_t))$	full two-loop
\mathfrak{m}_{h_1}	144.8	122.6 (-15.3%)	126.5 (+3.2%)	128.0 (+1.2%)
\mathfrak{m}_{h_2}	713.2	745.9 (+4.6%)	745.8 (+0.0%)	747.9 (+0.3%)
\mathfrak{m}_{h_3}	1454.5	1421.1 (-2.3%)	1420.1 (-0.1%)	1420.3 (+0.0%)

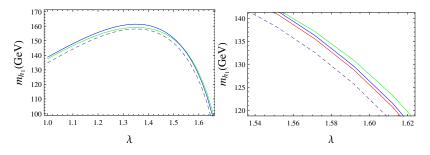
Here the corrections have changed sign: the NMSSM-specific corrections dominate the MSSM ones.

MSSM

NMSSM

Conclusions

Heavy singlet II



Blue: $\alpha_s \alpha_t$, Red: MSSM $(\alpha_t + \alpha_b + \alpha_\tau)^2$ included, Green: full SARAH result. Clearly the approximation gives misleading results for large λ

MSSN

NMSSM

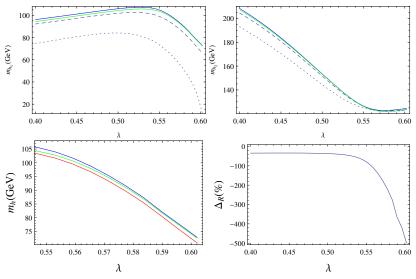
Conclusions

Light singlet

When the singlet-like scalar is <u>ligher</u> than 125 GeV – a case particularly interesting for experimental searches – the SM-like Higgs has a tree-level boost. However, we expect existing 2-loop results to be inadequate because they do not include the new singlet or the other new states!

$$\begin{split} \lambda &= 0.596 \ \kappa = 0.596 \ T_\lambda = -27 \ \text{GeV} \ T_\kappa = -240 \ \text{GeV} \ \mu_{\text{eff}} = 130 \ \text{GeV} \\ T_t &= -3050 \ \text{GeV} \ T_b = T_\tau = -1000 \ \text{GeV} \\ m_{\tilde{Q},33}^2 &= 9.0 \cdot 10^5 \ \text{GeV}^2 \ m_{\tilde{U},33}^2 = 1.05 \cdot 10^6 \ \text{GeV}^2 \end{split}$$

	Tree	one-loop	two-loop $(\alpha_{s}(\alpha_{b} + \alpha_{t}))$	full two-loop
\mathfrak{m}_{h_1}	19.4	67.8 (+249.5%)	74.5 (+9.9%)	74.2 (-0.4%)
\mathfrak{m}_{h_2}	122.7	123.5 (+0.7%)	124.3 (+0.6%)	123.3 (-0.8%)
\mathfrak{m}_{h_3}	177.4	188.2 (+6.1%)	192.7 (+2.3%)	191.1 (-0.8%)



Clearly the MSSM approximation fails here!

Conclusions: NMSSM

- We have considered the standard NMSSM at small $\tan \beta$ where the tree-level effects are largest, and the two-loop effects are expected in general to be small.
- However, even in this case we find that generally, while the $\alpha_s \alpha_t$ corrections are a reasonable approximation to the full result, including the MSSM Yukawa corrections can actually make the approximation worse!
- SARAHshould really be considered now an indispensible tool for studying the NMSSM Higgs masses (at least until we port a standalone code to be included in other spectrum generators).

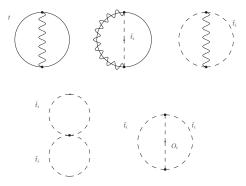
MSSM

NMSSN

Conclusions

Dirac gauginos

As mentioned above, have analytic results for the $\alpha_s \alpha_t$ contributions universal to all Dirac gaugino models, and a code (written with P. Slavich).



Find that the effects can be large!

Analytic results and study of full corrections in specific models to come ...

MSSN

Conclusions

- We now have a tool to compute the Higgs mass to two loop precision for <u>any</u> SUSY model.
- For the MSSM, there might be cases where we provide an improvement over existing tools.
- For the NMSSM, there are certainly regions of the parameter space where previously existing tools are inaccurate.
- We have opened up a new line of work to improve upon this! Many future directions ...

