

Discovery potential for $T' \rightarrow tZ$ in the trilepton channel at the LHC

Lorenzo Basso IPHC, Strasbourg

Based on LB, J. Andrea, arxiv:1411.7587

GDR 2014 Terascale@Heidelberg

- Simplified model for T' analyses
- Out-based analysis
- Glimpses of MVA
- Results: Discovery potential
- Conclusions

LHC run-I at $\sqrt{s} = 7/8$ TeV: found the Higgs boson

LHC run-II at $\sqrt{s} = 13(14)$ TeV: (among others) study Higgs boson properties, clarify if SM boson, search for New Physics

Which NP? To stay with the scalar sector, many BSM theories predicts new heavy fermions to stabilise the Higgs boson mass and to protect it from dangerous quadratic divergences

Generally, heavy partners of the third generation quarks with *vector-like* couplings: Extra Dimensions, Little Higgs Models, Composite Higgs Models

Here, **singlet top partner**: T'. Many models \rightarrow simplified model We also allow for generic mixing to 1^{st} generation guarks

イロト イポト イヨト イヨト

M. Buchkremer et al. Nucl.Phys. B876, 376 (2013) [1305.4172]

$$\begin{split} \mathcal{L}_{\mathrm{T}'} &= g^* \left\{ \sqrt{\frac{R_L}{1+R_L}} \frac{g}{\sqrt{2}} [\overline{T'}_L W^+_\mu \gamma^\mu d_L] + \sqrt{\frac{1}{1+R_L}} \frac{g}{\sqrt{2}} [\overline{T'}_L W^+_\mu \gamma^\mu b_L] + \right. \\ &\left. \sqrt{\frac{R_L}{1+R_L}} \frac{g}{2\cos\theta_W} [\overline{T'}_L Z_\mu \gamma^\mu u_L] + \sqrt{\frac{1}{1+R_L}} \frac{g}{2\cos\theta_W} [\overline{T'}_L Z_\mu \gamma^\mu t_L] \right\} + h.c. \end{split}$$

Only 3 parameters:

- $M_{T'}$, the vector-like mass of the top partner
- $g^*,$ the coupling strength to SM quarks, only relevant in single production. $\sigma \propto (g^*)^2$
- R_L , the mixing coupling to first generation quarks. $R_L = 0$ corresponds to coupling to t/b only

This talk: single top partner production, trilepton decay mode via $T' \rightarrow tZ$, at the LHC at $\sqrt{s} = 13$ TeV and $\mathcal{L} = 100$ fb⁻¹

Single production and $T' \rightarrow tZ$

$M_{T'}$ (GeV)	$\mathcal{A}_1(M_{T'})$ (pb)	$\mathcal{A}_3(M_{T'})$ (pb)	$\mathcal{B}(M_{T'})$ (%)
800	1.2614	0.07242	22.4
1000	0.7752	0.03518	23.5
1200	0.5001	0.01826	24.0
1400	0.3331	0.00994	24.2
1600	0.2265	0.00561	24.4

Lorenzo Basso (IPHC)

Monte Carlo simulation details

LO samples simulation with

- parton level: MG5_aMC@NLO (CTEQ6L1)
- Hadronisiation/showering: Pythia6 Tune Z2
- FastSim: Delphes3 ma5Tune
- Analysis: MadAnalysis5

Signal:

5 benchmark points of T' mass in steps of 200 GeV: $M_{T'} \in [800; 1600]$ GeV, with $g^* = 0.1$ and $R_L = 0.5$. No k-factors

Backgrounds (plus up to 2 jets):

- 3 prompt leptons: $t\bar{t}W$, $t\bar{t}Z$, tZj, and WZ
- non-prompt leptons: $t\bar{t}$ and Z/W + jets

Samples normalised to NLO cross sections where available.

CMS detector emulation

Anti $-k_T$ algorithm with R = 0.5

b-tagging CVS medium working point: tag= 70%, mistag= 1%

Objects selection

Objects identification

$p_T(\ell)>20~{ m GeV}$,	$ \eta(e/\mu) < 2.5/2.4 ,$	(1)
$p_T(j) > 40$ GeV,	$\Delta R(\ell,j) > 0.4,$	(2)
$ \eta(j) < 5$	$ \eta(b) < 2.4$	(3)

Background	no cuts	$1 \le n_j \le 3$	$n_\ell \equiv 3$	$n_b \equiv 1$
$t\bar{t}(+X)$	7.5 10 ⁶ (100%)	6.110^6 (81.2%)	514.9 (<mark>0.09%</mark>)	243.8 (47.3%)
tZj	3521 (100%)	2953 (83.9%)	290.6 (9.8%)	170.0 (58.5%)
WZ	1.4 10 ⁵ (100%)	5.710 ⁴ (41.9%)	3883 (6.9%)	164.3 (<mark>4.2%</mark>)
Total	7.6 10 ⁶ (100%)	6.1 10 ⁶ (80.5%)	4689 (0.08%)	578.0 (12.3%)
$M_{T'}$ (GeV)	no cuts	$1 \le n_j \le 3$	$n_\ell \equiv 3$	$n_b \equiv 1$
800	119.7 (100%)	105.0 (87.8%)	39.3 (37.4%)	25.5 (64.8%)
1000	77.1 (100%)	67.8 (87.9%)	26.0 (38.4%)	16.4 (63.2%)
1200	52.0 (100%)	45.3 (87.2%)	16.1 (35.6%)	10.1 (62.4%)
1400	35.3 (100%)	30.5 (86.6%)	8.0 (26.1%)	4.8 (60.1%)
1600	24.5 (100%)	21.1 (86.0%)	3.8 (18.0%)	2.2 (58.3%)

Signal generated without taus

Cut-based analysis

Selections

$ M(\ell^+\ell^-)/\operatorname{GeV} - M_Z $	< 15,	(4)
$10 < M_T(\ell_W)/\text{GeV}$	< 150,	(5)

$$0 < M_T(\ell_W b) / \text{GeV} < 220.$$
 (6)

Background	$n_b \equiv 1$	cut (4)	cut (5)	cut (6)
$t\bar{t}(+X)$	243.8 (47.3%)	154.8 (63.5%)	135.1 (87.3%)	83.0 (61.5%)
tZj	170.0 (58.5%)	155.6 (67.2%)	148.7 (95.6%)	139.8 (63.7%)
WZ	164.3 (4.2%)	146.9 (89.4%)	138.2 (94.1%)	71.5 (51.7%)
Total	578.0 (12.3%)	457.2 (79.1%)	422.0 (92.3%)	294.3 (69.8%)
$M_{T'}$ (GeV)	$n_b \equiv 1$	cut (4)	cut (5)	cut (6)
800	25.5 (64.8%)	23.8 (93.6%)	22.2 (93.2%)	20.8 (93.6%)
1000	16.4 (63.2%)	15.4 (93.8%)	14.3 (92.4%)	13.4 (94.0%)
1200	10.1 (62.4%)	9.5 (94.2%)	8.7 (92.3%)	8.1 (92.3%)
1400	4.8 (60.1%)	4.5 (93.5%)	4.1 (92.1%)	3.8 (91.3%)
1600	2.2 (58.3%)	2.1 (93.3%)	1.9 (92.2%)	1.7 (90.0%)

Cuts optimised to retain $\ge 90\%$ of signal

 $M_T(b\,3\ell)$

Signal clearly visible over background

Distribution in transverse mass, sharper peaks than invariant mass

Q: can we do better?

Lorenzo Basso (IPHC)

MultiVariate Analysis (MVA)

Cut-based strategy: suitable cuts on the most straightforward distributions Is the best strategy?

Many additional variables to distinguish signal from background Recall the kinematics: T' very heavy, t - Z back-to-back and boosted

However, cutting on any of these variables unavoidably reduce also the signal

Solution:

combine several variables using a *multivariate analysis* (MVA) to obtain the best signal/background discrimination

Here we used Boosted Decision Tree (BDT)

Variables drawn after Z mass cut: $M_T(\ell_W)$, $M_T(\ell_W b)$; MET, H_T , S_T ; p_T , η ; $\Delta\eta$, $\Delta\phi$, angular correlations, ...

Some variables correlated, like $p_T(Z)$ and $p_T(\ell_1)$: choose a reduced and uncorrelated set with still large sensitivity

イロト イヨト イヨト イヨト

MVA variables

 $p_T(Z)/M_T(b\,3\ell), \, p_T(j_1)/M_T(b\,3\ell), \, \text{and} \, M_T(b\,3\ell)$ are decorrelated

< • • • **•**

BDT output

Allows to check for "overtraining": 2 random samples, one used for training and the other one for comparison, should get similar output

Surviving events and significances for signal benchmark points ($g^* = 0.1, R_L = 0.5$)

- C&C: select a window around the peak in $M_T(b3\ell)$
- MVA: perform a LH cut on BDT output

to maximise the significance: $\sigma = S/\sqrt{S+B}$

A	nalysis	$M_{T'} = 0.8 \text{ TeV}$	$M_{T'} = 1.0 \text{ TeV}$	$M_{T'} = 1.2 \text{ TeV}$	$M_{T'} = 1.4 \text{ TeV}$	$M_{T'} = 1.6 \text{ TeV}$
$M_T(b3)$	ℓ) cut (GeV)	[800 - 860]	[840 - 1200]	[1000 - 1340]	[1120 - 1640]	[1200 - 1800]
	S (ev.)	18.00	12.28	7.16	3.40	1.57
C&C	B (ev.)	8.90	4.88	1.74	0.90	0.63
	σ	3.47	2.96	2.40	1.64	1.06
N 41 / A	cut	0.07	0.08	0.11	0.12	0.12
IVIVA	σ	3.64	3.10	2.50	1.62	1.15

MVA: non-significant improvement (5%-8%)

Significance depends on g^* and R_L per fixed T' mass

Discovery power: parameter space

(dashed lines: 5σ , solid lines: 3σ)

 T^\prime masses up to $2~{\rm TeV}$ can be observed

Increased reach when R_L is non-vanishing (maximum for $R_L \simeq 1$, corresponding to 50%–50% mixing)

• • • • • • • • • • • •

Singlet top partners T' common to many BSM models

Simplified model: only 3 parameters, simple rescaling to cover whole phase space

 $T' \rightarrow tZ:$ study of the trilepton signature at $\sqrt{s} = 13~{\rm TeV}$ in single production mode

T' masses up to 2.0 TeV and couplings down to $g^* = 0.1$ can be probed. Large gain if mixing with light generation is accounted for

Results from cut-based analysis: simple *and* effective, no substantial improvements from MVA

Backup slides

 $\langle \Box \rangle \langle \Box \rangle$

Variable	Importance	Variable	Importance
$M_T(b3\ell)$	2.6010^{-1}	$\Delta R(b, \ell_W)$	9.7710^{-2}
$p_T(Z)/M_T(b3\ell)$	9.4110^{-2}	$\Delta \varphi(t, Z)$	8.1710^{-2}
$\eta^{max}(j)$	6.0210^{-2}	$\Delta \varphi(\ell \ell _Z)$	5.8910^{-2}
$\Delta \varphi(Z, \not \!\!\!p_T)$	5.3710^{-2}	$p_T(j_1)/M_T(b3\ell)$	5.0810^{-2}
$\Delta \eta(\ell \ell _Z)$	$5.05 10^{-2}$	$\Delta \eta(b, \ell_W)$	5.0310^{-2}
$\eta(t)$	4.9910^{-2}	$\Delta \varphi(Z, \ell_W)$	4.6310^{-2}
$\eta(Z)$	4.6110^{-2}		

 $(\ell \ell|_Z)$: the pair of leptons reconstructing the *Z* boson $\eta^{max}(j)$: jet with largest rapidity (to account for associated jet) $p_T(j_1)/M_T(b\,3\ell)$ and $p_T(Z)/M_T(b\,3\ell)$ effectively decorrelated from $M_T(b\,3\ell)$ Angular variables from fully reconstructing the neutrino 4-momentum

Correlations

Correlation Matrix (signal)

Lorenzo Basso (IPHC)