
System Management
– a security perspective

Leif Nixon

1/37

System updates
Should we ever update the system?

Some common update strategies:
1. If it works, don’t touch it!
2. We pick and choose the most important
updates.

3. We apply all updates.

2/37

System updates
Discovering the need to update

Watch vendor announcement lists
Watch general security lists
Be part of a community that can a�ord to
watch more speci�c resources

3/37

System updates
Triage – Do we care?

Useful scale:
1. Update later (scheduled or together with
more important stu�)

2. Update as soon as we get an update in our
preferred format

3. Take care of it right now in one way or
another!

4/37

System updates
Triage – Do we care?

Caution: “Important” for the vendor may still
mean “Critical” for you!
Most security advisories are not tuned for our
environment, with many general shell users. A
“local root exploit” is critical to us!

5/37

System updates
Updating the triage

Generally, things get more broken with time.

Sometimes: lucky breaks in the other direction;
“Ah, it turns out the bug is only triggered if you use
feature X”
“We found this simple workaround”

6/37

System updates
Updating the triage

Generally, things get more broken with time.
Sometimes: lucky breaks in the other direction;
“Ah, it turns out the bug is only triggered if you use
feature X”
“We found this simple workaround”

6/37

System updates
Problems getting updates

Waiting for repackagers
Example: CentOS
Waiting for vendor solutions
Example: proprietary �lesystem drivers
Figuring out stu� built from source at site
Example: a lot of big scienti�c packages

7/37

System updates
Solutions for getting updates

If it hurts, don’t do it
Limit dependency on turn-key solutions,
third-party dependencies as far as possible.
Make vendors understand our pain. Again
and again. Until they understand.
Prepare for building own packages
Example: For RHEL/CentOS set up mock
environment, do test builds of likely/hard
components (kernel, glibc, ...)

8/37

System updates
Solutions for getting updates

Document source builds so they can be
redone by others
Automatic build scripts/systems may
help. . .

. . . but not if too complicated!
Make sure you have the credentials,
licenses etc needed to download vendor
updates when you need them.

9/37

Workarounds
Trust, but verify

Can we test that it works? Do we trust it?
Always remember that even if one particular
exploit fails, you may still be vulnerable...

10/37

Workarounds
Systemtap to the rescue

Systemtap is often useful for working around
kernel vulnerabilities.
Example: to block the CVE-2013-2094
vulnerability in the perfmonitor subsystem:
probe kernel.function("sys_perf_event_open") {

printf("sys_perf_event_open DENIED!\n");
$attr_uptr = 0

}

11/37

How to deploy updates
Updating login nodes and system servers

Reboot not needed
Updates can often be applied right away.
Make sure enough stu� is restarted! Do you
know about /usr/bin/needs-restarting?
Reboot needed
Multiple login servers help. Multiple
redundant system servers help too.
Otherwise, make sure a quick reboot does
not cause user problems (lost jobs, failed
�le operations, . . .)

12/37

How to deploy updates
Updating worker nodes

Reboot not needed
Updates may be applied right away, but. . .
. . . do you care about OS jitter? Can we do
work in the job epilog?
. . . are you sure the update persists? (more
on this later)

13/37

How to deploy updates
Updating worker nodes

Reboot needed
Automate rolling updates (rebooting as
soon as current job is done)!
Keep users out of nodes they do not run
jobs on.
Can we accept the risk that users can login
to nodes that are not yet updated? If not,
shut down user login access to nodes.

14/37

No workaround, no update?
Decide beforehand when it will be appropriate to
shut down access. Get management acceptance
for this.

Levels:
1. No new logins accepted, but do not kick out
those who are logged in.

2. No logins accepted, logged in users kicked
out, jobs keep running.

3. Jobs killed, too.

15/37

No workaround, no update?
Decide beforehand when it will be appropriate to
shut down access. Get management acceptance
for this.
Levels:
1. No new logins accepted, but do not kick out
those who are logged in.

2. No logins accepted, logged in users kicked
out, jobs keep running.

3. Jobs killed, too.

15/37

No workaround, no update?
Keep users and management informed!

“We have temporarily blocked logins while
we are investigating how to secure the
system against a serious security
vulnerability that was released today”

easily becomes
“I dunno, I heard they shut down the
system because it was hacked or
something.”

16/37

Con�guration management
A consistent system con�guration over nodes
and servers is important for security, but also
for functionality and performance.

17/37

Con�guration management
Node installation

Special consideration for compute nodes: When
and how do we (re-)install them?
1. Manually installed node image, use that
when booting

2. Scripted install (kickstart etc) for making
node image, use that when booting

3. Scripted install when needed, reboot from
disk otherwise

4. Scripted install on every boot

18/37

Con�guration management
Node installation

Node reinstallation on every reboot:
Good: Nodes are always clean.
Bad: Nodes already zapped when you want to do
forensics.

19/37

Con�guration management
Deployment at scale

Letting thousands of servers wget/rsync from a
few system servers might not work.
Solutions: Bittorrent? Multicast?

20/37

Con�guration management
Keeping things consistent

How do we make sure we do not forget vital
con�guration?
1. Checklists
2. Scripts
3. Con�guration management tools – Ansible,
Cfengine, Chef, Puppet, Quattor, . . .

Warning: Abstracting too much may make
system administration harder. Strive for the
right balance!

21/37

Con�guration management
Keeping things consistent

How do we make sure we do not forget vital
con�guration?
1. Checklists
2. Scripts
3. Con�guration management tools – Ansible,
Cfengine, Chef, Puppet, Quattor, . . .

Warning: Abstracting too much may make
system administration harder. Strive for the
right balance!

21/37

Con�guration management
Keeping things consistent

Then add version control on top of this. Now,
you also know how it was four months ago!
Log your actions. Still useful, even with
con�guration management tools (but may
partly be the commit log).
May be as simple as a date-ordered text �le on
the system server.

22/37

Con�guration management
Keeping things consistent

Package your own tools, scripts etc.
Example: Instead of some slightly di�erent
scripts in /root/bin on four clusters, we might
aim for versioned RPM package on internal repo
server, with source in git.

But again, don’t overdo this. . .

23/37

Con�guration management
Keeping things consistent

Package your own tools, scripts etc.
Example: Instead of some slightly di�erent
scripts in /root/bin on four clusters, we might
aim for versioned RPM package on internal repo
server, with source in git.

But again, don’t overdo this. . .

23/37

Con�guration management
Node health checking

Running health checking scripts in
prolog/epilog might not be all that security
related, but it saves a lot of other trouble...
We can add test for “security problem X �xed”
if we want.

24/37

Compartmentalization
The waterfall model of trust

Be aware of the direction of the trust �ow.
For example:
OK: desktop I system server I compute node
OK: desktop I system server I login node

Bad: desktop I login node I system server
Bad: login node console I infrastructure server

25/37

Compartmentalization
The waterfall model of trust

Be aware of the direction of the trust �ow.
For example:
OK: desktop I system server I compute node
OK: desktop I system server I login node
Bad: desktop I login node I system server
Bad: login node console I infrastructure server

25/37

Compartmentalization
The waterfall model of trust

Explain reasoning to all system sta�.
Yes, it may be inconvenient at times.
Yes, it may save your cluster one day.

Enforce using account �lters, �rewalls, etc.

26/37

Compartmentalization
Separate servers

Users should only have access to the login nodes
and, possibly, their allocated worker nodes.
Keep system servers separate from login nodes.
On large systems, separate system servers more
if possible.
Example: File servers may require kernel versions
with known local root exploits for weeks or forever.
Restrict access to them!

27/37

Compartmentalization
Separate credentials

Do not use the same password or similar for
di�erent levels in the waterfall.
Do not use the same root password on di�erent
clusters.
Goal: Nothing you can steal at a lower level
should gain you access at a higher level. But it’s
hard to fully reach this.

28/37

Compartmentalization
Separate credentials

Example:
Only sta� can login to system servers. Good.
But sta� homedirs are mounted on login nodes
and compute nodes.
If you get root on them, you can become a sta�
member, change .pro�le, get to run code on
system server (or boobytrap “ssh”, “su”, . . .)

29/37

Compartmentalization
Separate credentials

Be careful with single sign-on!
Example:

Library password
H

LiU password
H

Personal certi�cate
H

Supercomputer access!

30/37

Hardening
There are a lot of things we can do. Some may
con�ict with ease-of-use, some not.

31/37

Hardening
suid stripping

Example: NSC antisuid runs from cron
Whitelist of known binaries that are allowed
to be setuid root – ping, sudo. . .
Blacklist of known binaries that should have
their suid bit stripped – mount. . .
Any other suid binaries found? Sound the
alarm!

32/37

Hardening
File system �ags

Whenever possible, mount �le systems:
read-only
nosuid, nodev
root squash
norelatime – performance vs. forensic
abilities

33/37

Hardening
Module loading

Many kernel exploits depend on being able to
load some obscure module. Questions to
consider:

Can we turn o� module loading completely?
Can we at least turn o� autoloading of
modules?

34/37

Hardening
Security frameworks

SELinux, grsecurity. . .
NSC doesn’t do this. Any success stories?
Introducing third-party dependencies may
make updating harder.

35/37

Hardening
Help the users proactively

Examples of things you can do periodically:
Check for really bad �lesystem permissions
Check for bad SSH usage

I Unencrypted private keys
I Known bad keys in authorized_keys
(remember the Debian Debacle?)

36/37

And much, much more. . .
We still haven’t covered things like log
management, log analysis, intrusion
detection. . .

37/37

And much, much more. . .
We still haven’t covered things like log
management, log analysis, intrusion
detection. . .

. . . so here comes another 40 slides!

37/37

And much, much more. . .
We still haven’t covered things like log
management, log analysis, intrusion
detection. . .

. . . just kidding!

37/37

And much, much more. . .
We still haven’t covered things like log
management, log analysis, intrusion
detection. . .

. . . just kidding!

Questions? Opinions? Protests?

37/37

