

OMEGA presentation IHEP visit

Salleh AHMAD, Sylvie BLIN, Stéphane CALLIER, Frederic DULUCQ, Julien FLEURY, Christophe de LA TAILLE, Gisèle MARTIN-CHASSARD, Ludovic RAUX Nathalie SEGUIN-MOREAU, Damien THIENPONT, Jeanne TONGBONG

> OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3 <u>http://omega.in2p3.fr</u> & WEEROC SAS <u>http://weeroc.com</u>

Organization for Micro-Electronics desiGn and Applications

Electronics in experiments

- A lot of electronics in the experiments...
 - The performance of electronics often impacts on the detectors
 - Analog electronics (V,A,A...) / Digital electronics (bits)

Electronics enabling new detectors : trackers

- millions of pixels (~100 µm)
- binary readout at 40 MHz
- High radiation levels
- Made possible by ASICs

Importance of electronics : calorimeters

mega

- Large dynamic range (10⁴-10⁵)
- High Precision ~1%
 - Importance of low noise, uniformity, li
 - Importance of calibration

Energy resolution and uniforimity in ATLAS

16 iun 2014

- For humans

- large diameter FOV (>60 cm)
- spatial resolution: few mm
- time resolution CRT< 400 ps for ToF
- high sensitivity (low dose) → large area -
- high total data rate

- For mice, rats, rabbits (& human brain)
- Small diameter FOV (4-15 cm)
- spatial resolution: <1 mm
- time resolution only for coinc. (few ns)
- a medium sensitivity
 - Depth of Interaction desirable to fight parallax effect

P. Fischer, Heidelberg University

« Microelectronics poles »

- Motivation :
 - Continuous increase of chip complexity (SoC, 3D...)
 - Minimize interface problems
- Importance of critical mass
 - Daily contacts and discussions between designers
 - Sharing of well proven blocks
 - Cross fertilization of different projects

- Creation of poles with critical mass (~10 persons)
 - Orsay (OMEGA)
 - Clermont-Lyon (MICHRAU)
 - Strasbourg (IPHC)

Examples of chips at IN2P3

MIMOSA26

Pixel array: 576x1152

Chip dimension: ~ 3 cm²

IHEP

MAPS sensors at IPHC (Strasbourg)

- ROC chips at OMEGA (Orsay)
- PARISROC2 MICROROC HARDROC SKIROC2 **MAROC3** SPIROC2 **SPACIRO OMEGAPIX**

MIMOSTAR

Chips at MICHRAU (Lyon-Clermont)

Omega microelectronics lab

OMEGA group

Omega

- Mutualized ASIC design team
- 10 research engineers (1 IR0, 2 IR1, 6 IR2, 1CDD), 2 pHD students
- Importance of critical mass for more and more complex circuits
- Cross-fertilization between projects
- Technology transfer via startup WEEROC

CdLT IHEP visit

OMEGA ROC chips

- Use of Silicon Germanium 0.35 µm BiCMOS technology since 2004
- Readout for MaPMT and SiPM for ILC calorimeters and other applications
- Very high level of integration : System on Chip (SoC)

Chip	detector	ch	DR (C)
MAROC	PMT	64	-2f-50p
SPIROC	SiPM	36	+10f-200p
SKIROC	Si	64	+0.3f-10p
HARDROC	RPC	64	-2f-10p
PARISROC	PM	16	-5f-50p
SPACIROC	PMT	64	-5f-15p
MICROROC	µMegas	64	-0.2f-0.5p
PETIROC	SiPM	32	50fC-300pC

http://omega.in2p3.fr

mega

SPIROC2

SPACIROC

MAROC for MAPMT

- Started with OPERA_ROC (2001)
 - 32 Channels in BiCMOS 0.8 μm
 - 3000 chips produced in 2002
 - Readout OPERA Target tracker in Gran Sasso
- MAROC1 (2004)
 - First prototype with 64 channels
 - AMS SiGe 0.35 μm (12 mm², Pw=5 mW/ch)
- MAROC2 (2006)
 - 1000 chips produced and bonded on a compact PCB for ATLAS luminometer (ALFA)
- MAROC3 (2009)
 - Lower power dissipation
 - Wilkinson ADC added
 - 1000 chips produced in 2010
- Many applications: Double-Chooz, Menphyno, medical ir

mega

MAROC : MultiAnode Read-Out Chip

- Complete front-end chip for 64 channels
 multi-anode photomultipliers
 - 6bit-individual gain correction
 - Auto-trigger on 1/3 p.e. at 10 MHz
 - 12 bit charge output
 - SiGe 0.35 μ m, 12 mm², Pd = 5 mW/ch
- Bonded on a compact PCB (PMF) for ATLAS luminometer (ALFA)
- Also equips Double-Chooz, medical imaging...
- 3000 chips produced

mega

CdLT IHEP visit

64 PM inputs

AMS SiGe 0.35µm Package: CQFP240 Area: 16 mm2

2 Fast OR outputs

MAROC3 users

2012-2013

Ralf ENGELS Vladimir SOLOVOV Scott Lumsden JJ Velthuis Piero Giorgio FALLICA/ ST micro Vincent TATISCHEFF Alexander Nadeev Domenico Lo Pesti E.L. Rizzini D. Lo Presti P. Rodrigues Stephen Wotton JJ Velthuis Riccardo Faccini Patrizia Rossi Sima Cristina Patrizia Rossi D.Cussans/P.Baesso Paolo Baesso

Allemagne/Juelich Portugal/ Coimbra UK/Glasgow UK/Bristol Italie/ Catania France/Orsay Russie Italy/Catania Suisse/Genève Italie/ Catania Portugal/Lisboa Suisse/Genève UK/Bristol Italie/Roma Italie/Frascati Roumanie/Magurele

Italie/Frascati

UK/Bristol

UK/Bristol

Alain Blondel Pedro Rodriguez William Brooks Stephane Colonges Evandro Lodi Rizzini Günter Kemmerling Thomas Schweizer

Jason Legere Evandro Lodi Rizzini Ronan Oger Erik Vallazza Daniel Bertrand Ronan Oger Jason Legere Tanushyam Bhattcharjee Vincent Tatischef

Suisse/Genève Portugal / Lisboa Chili / Valparaiso France / Paris Suisse / Genève Allemagne/Juelich Allemagne/Munich

i USA / Durham Suisse / Genève France / Paris Suisse / Genève Belgique / Bruxelles France / Paris USA / Durham rjee Kolkota/Inde France / Orsay Gabriela Llosa Pierre Salin Prof. A.A.Petrukhin Erik Vallazza Riccardo Faccini

Pierre Salin

Espagne / Valence Sofia Antipolis/France Russie/Moscou Suisse / Genève Roma/Italie Sofia Antipolis/France

ATLAS lumi : 500chips (LAL) Double Chooz : 1000 (Nevis)

CLAS12 RICH (INFN) LHCb RICH ? (CERN) JUNO ? (IPHC)

John Parsons	USA
Bernard Genolini	France / Orsay
Nicoleta Dinu	France / Orsay
JJ Jaeger	France / Paris
Vincent Tatischef	France / Orsay

Variant: SPACIROC

JEM EUSO experiment

Analog Front End similar to MAROC 64 channels

Photoelectron counting (<50MHz) Time Over Threshold (collab.JAXA/Riken/Konan University)

Digital part :Digitization,memorization

Power consumption < 1 mW/ch

data flow ~ 384 bits / 2.5 μs

Radiation tolerance : triple voting

SPACIROC : 16mm²

Vтн1 64 Anodes PhotonCounting *Pre-Amp rig PA International Space Station (ISS) (adjustable gain) Dataout0 *Unipolar rig FSI ast Shape hv Digital 64 pre-amp MAPMT signals **IEM-EUSO** Counters & Very Fast Readout Trig VF Shaper Σ8 **UV** photon VTH3 PhotonCounting Trig_Kt 8 / 8-pixel-sum sum Dataout7 Extensive Air Shower (EAS) **KI (Q-to-T) KI Dataout Dynode Trig_K (D12) dynode VTH4 Cd4 EIHEP visit

CALICE ASICs

- Calorimeter readout: auto-trigger, analog storage, digitization and token-ring readout...
- power pulsing : <1 % duty cycle
- Optimized commonalities within EUDET/AIDA
- Dedicated run produced in march 2010 & nov 2014
 - 25 wafers = 200 k€ = 20 000 chips

HARDROC2 for RPC readout

- HARDROC2: 64 channels (RPC DHCAL)
 - preamp + shaper+ 3 discris (semi digital readout)
 - Auto trigger on 10fC up to 20 pC
 - 5 0.5 Kbytes memories to store 127 events
 - Full power pulsing => $7.5 \,\mu$ W/ch
 - Fully integrated ILC sequential readout
 - 10 000 chips produced to equip 400 000 ch
 - SDHCAL technological proto with 40 layers (5760 HR2 chips
 - Successful TB in 2012 : 40 layers with Power Pulsing modesmic hadronic shower

MICROROC: 64 channels for µMegas (DHCAL ILC)

□ Very similar to HARDROC except for the input preamp (collaboration with LAPP Annecy) and shapers (100-150 ns)

□ Pulsed power: **10 µW/ch** (0.5 % duty cycle)

□ HV sparks protection

□ 1 m2 in TB in August and October 2011. Very good performance of the electronics and detector (Threshold set to 1fC).

□ 2012: 4 m2 in TB

1m2 equipped with 144 MICROROC

Noise: 0.2fC Cd=80 pF => Auto trigger on 1fC up to 500fC

SKIROC : SiECAL chip

- 64 ch Si readout chip
 - Autotrigger @ $\frac{1}{2}$ MIP = 2 fC
 - Charge measurement 15 bits
 - Time measurement

mega

SPIROC for SiPM readout

- SPIROC : Silicon Photomultiplier Integrated Readout Chip
 - Developed to read out the analog hadronic calorimeter for CALICE (ILC)
 - DESY collaboration (EUDET project)
 - Chip embedded in detector : OW power !
- 36 channels autotrigger 15bit readout
 - Energy measurement : 15 bits in 2 gains
 - Autotrigger down to ½ p.e.
 - Time measurement to ~1ns
 - Power dissipation : 25µW/ch (power pulsed)

mega

$(0.36m)^2$ Tiles + SiPM + SPIROC (144ch)

EASIROC/CITIROC : variants of SPIROC

DE L'ACCÉLÉRATEUR L I N É A I R E

J TECH / PUSAN UNIV / KOREA **TOKYO UNIVERSITY / JAPAN** IFC - INAF / PALERMO / ITALIA IMNC / ORSAY / France LLR / PALAISEAU / France **UNIVERSITY ROMA / Italy INFN BARI / ITALY** IMNC / ORSAY / France EHWA / KOREA INL / LYON / France **TOULOUSE / France CERN / SWITZERLAND** RWTH / AACHEN / GERMANY **INFN ROMA / ITALY CERN / SWITZERLAND** UNIV. DIJON KETEK / GERMANY

Users of EASIROC Modules

Name	Institute	Usage
A. Ishikawa	Tohoku	Fiber tracker (Silicon Test)
K. Ueno	KEK	Fiber tracker (COMET Test)
A. Sato	Osaka	Fiber tracker (COMET Test)
J. Tojo	Kyushu	Fiber tracker (COMET Test)
T. Kin	Kyushu	Fibertracker (Muon Radiography)
W. Ootani	Tokyo	MEG
M. Yokoyama	Tokyo	T2K upgrade
A. Minamino	Kyoto	T2K upgrade
H. Kawai	Chiba	Fiber tracker J-PARC E36
K. Kotera	Shinshu	PET/SPECT
K. Kojima	KEK	Muon detector (Material Science)
H. Nakayama	KEK	Radiation Monitor (Belle2)
A. Sakaguchi	Osaka	Fiber tracker (Nuclear Phys J-PARC)
H. Fujioka	Kyoto	Fiber counter (Nuclear Phys, GSI)
T. Murakami	Kyoto	Trigger counter (RIBF, heavy ion)
K. Hanagaki	Osaka	Fiber tracker (Silicon Test)
O. Jinnouchi	Tokyo Tech	Education
K. Yorita	Waseda	Education
T. Mibe	KEK	muon g-2

FOV = 9.6° Ø = 350mm

Photon Detection Module (PDM) Pixel = $0.17^{\circ} \rightarrow 6.2 \times 6.2 \text{ mm}$

SiPM board (9 +1 temperature sensors embedde

Front-End board (2 CITIROC ASIC)

PDM FPGA Board (XILINX ARTIX 7)

CdLT IHEP visit

Chips for PET SiPM

- PETIROC (nov 13)
 - 32 channels,
 - 1 GHz SiGe amplifiers/discriminators
 - Internal ADC/TDC 50ps
- TRIROC EU Project (feb14)
 - 64 channels
 - Dual polarity
 - Internal ADC/TDC 50ps

CdLT IHEP visit

PET

TRImage

PARiSROC for PMm²

- Photomultiplier ARray Integrated SiGe Read-Out Chip
 - Replace large PMTs by arrays of smaller ones (PMm2 project)
 - Centralized ASIC 16 independent channels
 - Auto-trigger at 1/3 p.e.
 - Charge and time measurement (10-12 bits)
 - Water tight, common high voltage
 - Data driven : « One wire out »

Figure 3.3.4: The calibrated of different acquisition sys GeLT IHEP visit

1

PMm² demonstrator

PARISROC for WFCTA

.

Property	WFCTA Specific	Support or not	
Signal polarity	Negative (Anode) or Positive (Dyr	\checkmark	
Dynamic range	160fC to 240pC, (10pe to 15000	$pe @ Gain = 10^5$) 🛛 🗶 (need combine two channels into on
Resolution	< 20% @ 10pe and < 5% @ 1500)0pe	\checkmark
Nonlinearity	$< 2\% \ or < \pm 1\%$		$igstar{}$ (need combine two channels into on
Time resolution	20ns (RMS)		\checkmark
The adjustable threshold	5pe to 100pe		\checkmark
Single channel event rate	10kHz per channel		✗ (limited by USB interface and FPG.
Width of the signal	6ns to 50ns (FWHM) for Cherenke	ov light	
Pedestal monitoring	Background of electronics and sky	,	Performance limitations
Channels Power consumption	1024 channels per C Tiina Su 260W per telescope Yingta IPN, C	iomijarvi, o Chen Orsay	 FPGA (Altera Cyclone III) USB Interface (FTDI FT245X) Specific ports (External trigger)

Telescope first prototype installed in Tibet

LAGUNA-LBNO : Large Apparatus for Grand Unification and Neutrino Astrophysics - Long Baseline Neutrino Oscillations.

LAGUNA-LBNO

© Tomas Patzak, Margherita Buizza APC, Paris, France

mega

OMEGAPIX: 3D ATLAS nixels at SLHC

- Double tier pixel readout for ATLAS sLHC
 - 50x50x50 µm pixels
 - Low power 3 µW/ch, low threshold 1000e-
 - Chartered/Tezzaron run may 2009
 - Collab with CPPM and LPNHE

mega

19 mar 2013

CdLT seminar at KEK

- Startup company created in 2012 for industrial applications
- Cadence tools for industry (price !!)
- Contracts with space industry, nuclear industry, medical imaging
- 5 people + support from OMEGA
- http://weeroc.com/
- contact person: Julien Fleury

WEEROC High-end analogue & mixed microelectronics design

Summary

- Main activity : Analog and mixed-signal ASIC design
- Research topics :
 - multi-channel ASICs for particle physics and astrophysics detectors
 - BiCMOS SiGe and deep submicron CMOS technologies
 - ultra-low noise, low power and high speed design
 - radiation tolerance, reliability and space applications
 - integration with sensors and System on Chip (SoC)
 - chips for photodetectors, semiconductors or gaseous detectors
- Specific Applications :
 - medical imaging
 - low light "single photon" imaging
 - utilization in space

ROC family

	MAROC	SPIROC	EASIROC	HARDROC	MICROROC	SKIROC	PARISROC	SPACIROC
Technology	0.35µ SiGe	0.35µ SiGe	0.35µ SiGe	0.35µ SiGe	0.35µ SiGe	0.35µ SiGe	0.35µ SiGe	0.35µ SiGe
Packages available	•Naked •QFP240	•Naked •TQFP208	•Naked •TQFP160	•Naked •TQFP160	•Naked •QFP160	•Naked •QFP240	•Naked •QFP160	•Naked •CQFP240
Detector compliant	PMT, MAPMT, SiPM, µmegas, RPC	PMT, MAPMT, SiPM, μmegas, RPC, GEM, PIN	PMT, MAPMT, SiPM, μmegas, RPC, GEM, PIN	PMT, MAPMT, SiPM, µmegas, RPC	µmegas	RPC, GEM, PIN	PM matrix	MAPMT
Optimized for	MAPMT	SiPM	SiPM	RPC	µmegas	PIN	PM matrix	MAPMT
Nmber of channels	64	36	32	64	64	64	16	64
Kind of measureme nt	•Threshold •Charge	•Threshold •Charge •Time	•Threshold •Charge	•Threshold •Charge	•Threshold •Charge	•Threshold •Charge	•Threshold •Charge •Time	•Threshold •Charge
Outputs	64 triggers, 1 mux charge (analogue), 1 mux charge digitized	1 digital formatted output 1 mux charge (analogue)	32 triggers, 2 mux charge (anlogue), 1 mux trigger	1 digital formatted output 1 mux charge (analogue)	1 digital , formatted output 1 mux charge (analogue)	1 digital , formatted output, 1 mux charge (analogue)	16 triggers, 1 digital formatted outpu 1 mux trigger	64 triggers, t,9 mux charge
Input Polarity	Negative	Positive	Positive	Negative	Negative	Positive	Negative	Negative

Challenges for electronics

- ♦ High altitude and low air pressure → decreased heat dissipation
- ♦ Large number of channels → increased density, complexity and power consumption
- ♦ Harsh environment and remote location → require stability, reliability and maintainability
- ♦ Design based on IC → simplified design, decreased power consumption, increased reliability

- Compact design
- High stability
- High reliability
- Easy to maintain

We focused on WFCTA at first

The ASICs can be used to simplify the electronics of LHAASO

PETIROC2

- Time of Flight read-out chip with embedded TDC (25 ps bin) and ADC
- Dynamic range: 160 fC up to 400 pC
- 32 channels (negative input)
 - 32 trigger outputs
 - NOR32_chrage
 - NOR32 time
 - Charge measurement over 10 bits
 - Time measurement over 10 bits
 - One multiplexed charge output
- Common trigger threshold adjustment and 6bit-dac/channel for individual adjustment
- Variable shaping time of the charge shaper
- 32 8bit-input dac for SiPM HV adjustment
- Power consumption 6 mW/ch
- Front-end
 - common emitter SiGe fast amplifier, DC coupled to detector
 - Fast SiGe discriminator

CdLT IHEP visit

PETIROC2: « S-curves »

mega

SUMMARY

- PETIROC is a versatile high speed readout chip for SiPMs
- □ A 64 channel version (TRIROC) has just been produced (see talk by Salleh AHMAD)
- □ Engineering run (0.35µm SiGe AMS) foreseen at the end of this year

http://omega.in2p3.fr/

http://www.weeroc.com/

Chip	Detector	Ch	Polarity	Dyn Range	Specificities
MAROC	PM	64	<0	5 fC - 5 pC	64 trig outputs, internal 8/10/12-bit ADC (for charge measurment)
SPACIROC	PM	64	<0	2 pC- 220 pC	Fast photon counting (50MHz)
PARISROC	PM	16	<0	50 fC - 100 pC	Internal TDC (<1ns), 16 trig outputs
HARDROC	RPC	64	<0	2 fC - 10 pC	3 discriminators, 128 deep digital memory to store 2x64 discriminator encoded data
MICROROC	µMEGAS/GEM	64	<0	0.2 fC - 500 fC	3 discriminators, 128 deep digital memory to store 2x64 discriminator encoded data
SKIROC	Si pin diodes	64	>0	0.3 f C - 10 pC	Internal 12-bit ADC for charge measurement
SPIROC	SiPM	36	>0	10 fC - 300 pC	36 HV SiPM tuning (8 bits), Internal 12-bit ADC for charge and time measurement
EASIROC	SiPM	32	>0	10 fC - 300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs
CITIROC	SiPM	32	>0	10 fC - 300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs
PETIROC	SiPM	32	<0	100fC – 300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs, Internal 10-bit ADC for charge and time measurement (25 ps)
TRIROC	SiPM	64	Both	100 fC- 300 pC	64 HV SiPM tuning (8 bits), 64 trigger outputs, Internal 10-bit ADC for charge and time measurement (25 ps)