Neutrino Astronomy in the Mediterranean Sea

Multi-messenger astronomy

Neutrino

- \Rightarrow Transient sources
- \Rightarrow Cosmological distances
- \Rightarrow Core of astrophysical bodies
 - \Rightarrow Point source

⇒ Unambiguous signature of hadronic acceleration

Mutli-wavelength/messenger analysis \rightarrow Modeling of the source

Detection technique

Natural radiator is low cost and allows huge instrumented regions → Deep sea or lake → Deep clear Ice

Detection of Cherenkov light emitted by muons with a 3D array of PMTs

Requires a large (km³) dark transparent detection medium

Time, position, amplitude of PMT pulses $\Rightarrow \mu$ trajectory (~ v < 0.5 °)

 $\gamma_{\check{c}}$

Event topologies

Muon track from CC muon neutrinos

- Angular resolution 0.5°/0.1°
 for ice/water 1km³
- dE/dx resolution factor 2-3

Cascade from CC electron/tau and NC all flavour interactions Angular resolution 10°/3° at 100 TeV for ice/water

Energy resolution ~ 15%

Neutrino telescopes (TeV)

{ANTARES, NEMO, NESTOR} \in KM3NeT collaboration

A field recently opened !

Compatible with isotropic diffuse flux

Water Versus Ice

- Complementarity to IceCube South Pole
 Excellent view of Galaxy
- Long (homogeneous) scattering length
 Good pointing accuracy
- Deep sites: 2500→5000m
 Shielding from downgoing muons
- Logistically attractive
 Close to shore (deployment / repair)
- K40 optical background

Useful for calibration, but requires causality filters

Most of the HESS TeV Sources visible by Northern NT

The ANTARES neutrino telescope

Sea science and Earthquakes

Follow up analysis: the IceCube signal

A source near the Galactic Center?

A source near the Galactic Center?

Current limits

ANTARES has the best limits < 100 TeV for the Southern Hemesphere

Next step = KM3NeT

Collaboration: France, Germany, Greece, Italy, the Netherlands, Romania, Spain + Morocco

KM3NeT

Multi-km³ deep sea neutrino telescope in the Mediterranean Sea, substantially exceeding ANTARES/IceCube in sensitivity

> Two sites: Toulon, France, and Capo Passero, Sicily

Staged implementation:

Phase-1 in progress (31 M€)31 strings (2 sites) (local funding)Phase-1.5(Lol in prep.)230 strings (2 sites, 2 building blocks)Phase-2600 strings (6 building blocks)

Central physics goals:

- Investigation of IceCube signal (Phase 1.5)

- Neutrino Astronomy (neutrino "point" sources) (Phase 2)

> Nodes for deep-sea research in marine sciences (EMSO)

➢ Possibility of a site optimised for low energy (neutrino mass hierarchy) under study→ ORCA (cf PINGU in the IC context □ arXiv:1306.5846)

Design

Launcher vehicle

- rapid deployment
- autonomous unfurling
- recoverable

- Digital photon counting
- Directional information
- Wide angle of view

Optical module

- ← 17" →
- 31 x 3" PMTs
- low-power HV
- LED & piezo inside
- FPGA readout
- White Rabbit
- DWDM

3-inch PMTs

Cost

- Shore station (incl. computing)
- Deep-sea cable network
- Deployments
- Strings (without PMTs)
- PMTs (incl. base and lens)

\$ KM3NeT string ~ ¼ of \$ Antares string

1st prototype

1st prototype

Caracterisation test benches at APC

Sensitivity to the IC diffuse flux

Sensitivity to Galactic Sources

RXJ1713

General F.L. Villante and F. Vissani, Phys. Rev. D 78 (2008) 103007.

Measuring the neutrino mass hierarchy?

- Free 'beam' of neutrinos
- Broad range of baselines (50-1250km)
- Broad range of energies (~GeV-PeV)
- Composite of beam well understood: flux (nu)~1.3 flux (anti-nu)

- mass effects lead to event rates at particular angles and energies which depend on the mass hierarchy and is opposite for neutrino/anti-neutrino
- At these energies $\,\sigma(
 u)pprox 2\sigma(\overline{
 u})\,$ so observe net effect

ightarrow Fit of event count in Energy-Zenith space

- W. Winter : arXiv:1305.5539, Agarwalla et al. arXiv:1212.2238
- Akhmedov et al. JHEP 02 (2013) 082

PINGU sensitivity (40 strings, 60 OM/string, 5m/25m)

ORCA sensitivity (115 strings, 18 OM/string, 6m/20m)

+ Measurement of octant

Start 2019