

Direct detection of gravitational waves with Advanced Virgo

Éric Chassande-Mottin¹ and Éric Le Bigot^{1,2}

1. CNRS, AstroParticule et Cosmologie, Paris France 2. Tsinghua University, Beijing China

1-slide primer on Virgo

- Gravitational waves GW
 - Propagating space-time distorsion predicted by General Relativity
 - Goal: measure GW directly (in situ)

Kilometric Michelson interferometer

- Measure relative difference in optical path length to 10⁻²¹, or 10⁻¹⁸ m over km
- Sensitive band of a few 100 Hz

• Target distant astrophysical sources

 Typically: binaries of stellar mass compact objects (neutron star or black hole)

 $h\sim 10^{-21}\,{\rm for}~{\rm NS}$ binaries at 15 Mpc

$$h(t) = \frac{\delta L(t)}{L} \propto \delta \Phi(t)$$

GW detectors in the world

Since 2007, partnership and data exchange agreement About 1000 people involved

Science from 1st generation 2005-11

Reached design sensitivity!

"horizon" = detection range of coalescing binaries of neutron stars (BNS)

LIGO ~ 40 Mpc and Virgo ~ 20 Mpc

3 joint LIGO – Virgo science runs ~2 yrs total

40 papers published and more to come

Transient sources (BNS, BBH and bursts; in connection with astrophysical triggers, e.g., GRB or neutrinos)

Continuous sources (pulsars)

Stochastic background

Toward 2nd generation detectors

- Advanced Virgo
 - ✓ x 10 more sensitive → x 1000 more sources
 Larger frequency bandwidth
 - Same infrastructure new instrumentation
 - x 10 more laser power (200 W)

Increase finesse $- \times 65$ more light power stored in the cavities

Larger beam size – lower thermal noise from coatings – larger mirrors GW signal recycling

Being installed

Current plan : 1st science data in 2016

Science with 2nd generation 2015-2022+

	Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5\mathrm{deg}^2$	$20\mathrm{deg}^2$
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	—	—
2016 - 17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 - 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 - 2	10 - 12
2019 +	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 - 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

ArXiv:1304.0670

Gravitational wave transients

- Binary mergers
 - post-Newtonian model + numerical relativity
 - "Chirp"-like GW signals
- Supernova core collapses
 - No comprehensive view of the collapse
 - Numerical simulations
 - "Burst"-like GW signal
- ... and others

e.g. star quakes, cosmic strings

How our data get analyzed?

Matched filtering

Excess power

Stringent algorithmic constraints

Background estimated from the data itself – Monte-Carlo simulations 5σ detection limit \rightarrow analysis pipelines should run ~10⁶ faster than real time

Dealing with real data

- Data is non-Gaussian
 - Background has heavy tail
 - Glitches limit sensitivity of transient searches
- Data quality is a key issue
 - How to use the (~1000) auxiliary channels that monitor the detector environment?
 - Optimal learning procedures are being designed

Collaboration with China

- Only **1 LIGO group** in China (Tsinghua University)
- Eric Lebigot currently doing a long-term visit
- Joint work with APC: GW burst detection
 - Fast approximate GW template matching
 - GPU acceleration
- Other Tsinghua contributions
 - Data quality: Detection of interferometer glitches with machine learning
 - Virtual machine for the GW data analysis (desktop & clusters)

