Initiated by François Vannucci in 1982

- 1984-88: ν decays and oscillations: PS191 (CERN) and E816 (Brookhaven)
- 1990-2000: $\nu_{\mu} \rightarrow \nu_{\tau}$ NOMAD (CERN)
- 1997: $\nu_{\mu} \rightarrow \nu_{e}$ I216 (CERN)
- 2000-2008: hadro-production HARP (CERN)
- 2006-today: new generation $\nu_{\mu} \rightarrow \nu_{e}$ and hadro-production experiments T2K and NA61 (Tokai, Japan and CERN)
- Future: LBNO (Long Baseline Neutrino Oscillations between CERN and Finland)

T2K: Tokai to Kamioka

Primary goals of the experiment:

• Search for ν_e appearence:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx sin^{2} \theta_{23} sin^{2} 2 \frac{\theta_{13}}{4E_{\nu}} sin^{2} \frac{\Delta m_{32}^{2} L}{4E_{\nu}}$$

• Precise measurement of ν_{μ} disappearence

Near Detector Complex at 280m

Off-Axis (ND280) suite of fine grained detectors/tracker inside a 0.2 T magnetic field (UA1/NOMAD magnet)

Measure: CC ν_u events (normalization, spectrum)

NC π^0 , CC ν_e events (backgrounds) Neutrino interaction properties

On-axis (INGRID)

 14 + 2 iron scintillator tracking detectors (each unit \approx 10 ton) Measure v-beam direction and profile with 1mrad precision on daily basis

incoming neutrino beam

Off-axis near detector: ND280

Tracker Section

Fine Grained Detectors (FGD)

- Scintillator target mass
- Vertex reconstruction

Time Projection Chambers (TPC)

- Momentum reconstruction
- Particle identification

• • • • • • • • • • • • •

LPNHE contributions

Hardware: on the near detector (ND280)

TPC Data Concentrator Cards: electronics board for the TPC data acquisition Magnet power supply: design installation and commissioning (ongoing responsabilities: on-call experts for the TPC and Magnet during data taking; run coordination)

Analysis: within the T2K Analysis Strategy

Predict the event rates and distribution at Super-K as a function of θ_{13} and δ_{CP}

- Beam Monte-Carlo and neutrino interaction models provide the baseline prediction (LPNHE via NA61)
- Use the near detector measurements to normalize the ν_{μ} flux \oplus cross section to data
- Use the near detector to verify the ν_e prediction (LPNHE)

Select ν_e events at Super-K

Compare observed ν_e distribution to prediction and fit to preferred θ_{13}

(ongoing responsabilities: convenor of the ND280 ν_e analysis; convenor of the T2K-NA61 group and of the T2K-beam group; convenor of the NA61 software and analysis groups)

T2K main results

Selected T2K ν_e events in SK

- Observed: 28 evts
- Expected ($\theta_{13} = 0$): 4.92 ± 0.55
- Significance: 7.3σ

T2K has first measured a non-zero θ_{13} angle in 2011 confirmed at Neutrino2012 with a 3.2σ measurement

T2K has also produced a first measurement of the ν_{μ} disappearence

Prospective

- the near future goal of T2K: accumulate 5×10^{20} POT in anti-neutrino mode by summer 2015: combined with NO ν A and Daya Bay it could increase the sensitivity to δ_{CP}
- long term goal: desperately looking for *CP* violation in the neutrino sector: we will take part in the LBNO project with a first stage at building a big liquid argon prototype (6m x 6m x 6m active area double phase LAr detector) at CERN.

