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BIOLOGICAL SYSTEMS
• Robust 	



• Maintaining  its functions despite external and internal perturbation.	



• Function in unpredictable environments with unreliable components.	



• Evolvable	



• Adapt in ways that exploit new resources or allow them to persist under unprecedented 
environmental regime shift	



• Resilient 	



• Provide and maintain acceptable activity in the face of faults and challenges to normal operation	



• Bouncing back



RESILIENCE IN NETWORKED SYSTEMS
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ROBUSTNESS ?
• Robustness of what?	



• Robustness is only meaningful for a specific set of feature	



•  A (dynamic) state, a process, a function 	



• feature persistence or feature reproducibility?	



• Robustness with respect to what?	



• Robustness is meaningful with respect to a specified set of perturbations	



• Bounded  and likely	



•  transient versus  permanent perturbations	



• large versus  small perturbations	



• changes in the system versus  changes in its environment	



• changes in the system parameters versus  changes in its constitution (e.g.  removal of a link or a node in a network)	



• additive noise vs multiplicative noise



EX: PROTEIN FOLDING
•  A vey small fraction of possible amino-acid sequences corresponds to functional proteins.	



• A functional protein exhibits a primary folded structure, the native structure and several metastable ones. Protein function 
involves transitions between these conformations.	



• The conformation and the transition is believed to follow a free energy landscape	



• Proper functioning requires 	



• the conformations are structurally robust	



• the transitions between them occur in a controlled way.	



• For several proteins, this basic mechanism is supplemented by chaperone, i.e, specific auxiliary proteins binding the 
misfolded ones	



•  The very existence of chaperones and their functions	



• Results from the co-evolution 



ROBUSTNESS IN NETWORKS
•  The robustness of a network refers to the robustness of the phenomenon that the network captures	



•  Connectivity Robustness 	



• Percolation approaches	



• Robustness of the dynamics,	



• Persistence of the large-scale behaviour and properties after local perturbation	



• Persistence of some local properties despite a global change	



• Robustness of the transfer (information or other) between two nodes or two regions of the network despite the presence perturbations.	



• Mechanisms	



• Diversion	



• Existence of  alternative paths	



•  Plasticity 	



• The possibility of rewiring some connections;



PERCOLATION THEORY

• Q: If a given fraction of nodes or edges are removed…	



• how large are the connected components?	



• what is the average distance between nodes in the components



EDGE REMOVAL 
• Bond percolation 	



• edges are removed with probability (1-p)	



• corresponds to random failure of links	



• targeted attack	



• causing the most damage to the network with the 
removal of the fewest edges	



• strategies: remove edges that are most likely to break 
apart the network or  lengthen the average shortest 
path



PERCOLATION THRESHOLD
• Percolation threshold	



• the point at which the giant 
component emerges	



• As the average degree increases to  
p = 1, a giant component suddenly 
appears	



• Edge removal is the opposite process      
As  the average degree drops below 
1 the network becomes disconnected
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SCALE-FREE NETWORK 
RANDOM NETWORK

• gnutella network	



• 20% of nodes removed

574 nodes in giant component 427 nodes in giant component



SCALE FREE NETWORK	


TARGETED ATTACKS

• gnutella network, 	



• 22 most connected nodes removed (2.8% of the nodes)

301 nodes in giant component574 nodes in giant component



RANDOM VS. SCALE FREE NETWORKS

random failure targeted attack



REAL NETWORKS

Source: Error and attack tolerance of complex networks. 
Réka Albert, Hawoong Jeong and Albert-László Barabási



INFORMATION THEORY
• if P(x) is the weight we give to the presence of something, then H(x) becomes a 

measure of its absence !	



• If P(x) is very small, the large H(x) reflects that most of the time we do not see 
the event.	



• The indeterminacy of event	



• 0 if p=0 or p=1	



• Entropy is therefore the indeterminacy of an ensemble  	



• A metric of the total capacity of the ensemble to undergo change

S(x) = �k logP (x)

hi = �kpi log pi

H(X) = �k
P

i pi log pi

si = �k log pi



INFORMATION THEORY 
• Let’s extend to relationships between events	



• Mutual information	



• Conditional entropy  	



• Fundamental property 	



• the capacity for evolution or self-organization (H) toward 
perturbation can be decomposed into two components. 	



• Ascendency: I(X;Y) quantifying all that it regular, orderly, 
coherent and efficient.	



• Reserve : H(X|Y) representing the irregular, disorderly, 
incoherent and inefficient behaviors.

sij = �k log pij
ti|j = k log(pipj)� [�k log(pij)] = k log

⇣
pij

pipj

⌘

I(X;Y ) =

P
i,j pi,j log

pij

pipj

H(X) � I(X;Y )
H(X|Y ) = H(X)� I(X;Y )

H(X) = H(X|Y ) + I(X;Y )



EVOLUTION FITNESS

• Systems with small ascendency or reserve are not survivable	



• Systems that endure lie somewhere between these extremes.	



• We define the evolution fitness of a system by 

J(X;Y ) = I(X;Y )
H(X)

F = �2J(X;Y )

�
log J(X;Y )

� , 1 � F � 0

F
max

= 1 at J(X;Y ) = 21/�



KÖRNER GRAPH ENTROPY 
• A subset S of the vertices V of a graph G = (V, E) is independent if no edge in the 

graph has both endpoints in S. 	



• Given a graph G, define the graph entropy of G	



• where the minimum is taken over all pairs of random variables X, Y such that	



• X is a uniformly random vertex in G.	



•  Y is an independent set containing X.	



• Ex: for an unbalanced complete bipartite graph Km,n.	



• Property 	



• (Disjoint union). If G1, . . . , Gk are the connected components of G, and for each i,  
ρi =|V (Gi)|/|V (G)| is the fraction of vertices in Gi, then

H(G) = minX,Y I(X;Y )

H(G)  H( n
m+n )

H(G) =
P

i ⇢iH(Gi)



GIBBS GRAPH ENTROPY 
• Coming from statistical physics	



•  A network ensemble is formed by the set of network satisfying a given number of 
constraints.	



•  A partition function Z  counts the number of networks in the ensemble	



• Gibbs Entropy 	



• Link probability 	



• Graph Shannon Entropy 

⌃ =

1
N logZ s.t. hij(↵) = 0; 8(i, j,↵)

⇡ij(↵) =
@ logZ
@hij(↵)

P
i,j ⇡ij(↵) log ⇡ij(↵)

limN!1 ⌃ !
P

i,j ⇡ij(↵) log ⇡ij(↵)



SPECTRAL GRAPH THEORY 
• Study  the properties  of graphs  via the eigenvalues and eigenvectors  of their associated graph matrices 	



• The adjacency matrix, the graph Laplacian and their variants.	



• These matrices have been extremely well studied from an algebraic point of view.	



• The Laplacian allows a natural link between discrete representations (graphs), and continuous 
representations, such as metric spaces and manifolds.	



• Laplacian embedding consists in representing the vertices of a graph in the space spanned by the 
smallest eigenvectors of the Laplacian 	



• A geodesic distance on the graph becomes a spectral distance in the embedded (metric) space.



ADJACENCY MATRIX 

• For a graph with n vertices, the entries of the  adjacency matrix are defined by:



REAL VALUED FUNCTION OVER GRAPHS
• We consider real-valued functions                  on the set of the graph’s  

vertices 	



• Assigns a real number to each graph node.	



• Notation:	



• The eigenvectors of the adjacency matrix, can be viewed as eigenfunctions.	



• Quadratic form



INCIDENCE MATRIX
• Dual matrix of adjacency	



• Matrix defined on the edge of the graph	
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• The mapping              is known as the co-boundary mapping of f



THE LAPLACIAN MATRIX 

• Connection between Laplacian and Adjcency matrix 	



• D degree matrix



EXAMPLE 



EXAMPLE 



EXTENSION
• Laplacian for a weighted graph is defined as	



•  W is the weight matrix,	



•  D is a diagonal matrix with	



• Laplacian regularization	



• Normalized Laplacian 



FIEDLER VALUE OF A GRAPH  

• The first non-null eigenvalue            is called the Fiedler value.	



• The corresponding eigenvector is called the Fiedler vector.	



• The Fiedler value is the algebraic connectivity of a graph, the further 
from 0, the more connected.	



• The Fiedler vector has been extensively used for spectral partioning



VON NEUMANN ENTROPY 

• Strongly related to spectral properties 
of graph 	



• Based on the normalized laplacian L 	
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• Relations with Shannon Entropy 

SV N = �hTr(L) log(L)i⇧
log(L) = V log(⇤)V 0

SV N = ⌘ S
N + �



CONCLUSION 

• We tried to formalize the trade-off between ascendency/reserve, 
performance/plasticity, etc…	



• Korner Graph Entropy seems to go toward the first term	



• Von Neumann one toward the second one



FINALLY WHY THE ASIAN CAMEL HAS  TWO HUMPS ?


