


P OGICAL SYD IERE

s Reblst
- Maintaining its functions despite external and internal perturbation.

* Function In unpredictable environments with unreliable components.

* Evolvable

» Adapt In ways that exploit new resources or allow them to persist under unprecedented

environmental regime shift
& Reciiient
» Provide and maintain acceptable activity in the face of faults and challenges to normal operation

 Bouncing back
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James Sterbenz course on « Resilient and Survivable Networking »



PUBUSTINESS &

» Robustness of what!
 Robustness Is only meaningful for a specific set of feature
» A (dynamic) state, a process, a function
» feature persistence or feature reproducibility?
» Robustness with respect to what!
« Robustness Is meaningful with respect to a specified set of perturbations
» Bounded and likely

» transient versus permanent perturbations

large versus small perturbations

changes In the system versus changes in its environment

changes In the system parameters versus changes In its constitution (e.g. removal of a link or a node Iin a network)

additive noise vs multiplicative noise



. PROTEIN FOLIE TS

- A vey small fraction of possible amino-acid sequences corresponds to functional proteins.

» A functional protein exhibits a primary folded structure, the native structure and several metastable ones. Protein function
involves transitions between these conformations.

 [he conformation and the transition is believed to follow a free energy landscape
* Proper functioning requires

» the conformations are structurally robust

- the transitions between them occur in a controlled way.

» For several proteins, this basic mechanism is supplemented by chaperone, i.e, specific auxiliary proteins binding the
misfolded ones

- [he very existence of chaperones and their functions

« Results from the co-evolution



EOBUS INESS IN NETVVORES

+ The robustness of a network refers to the robustness of the phenomenon that the network captures

«  Connectivity Robustness

» Percolation approaches
« Robustness of the dynamics,

» Persistence of the large-scale behaviour and properties after local perturbation

» Persistence of some local properties despite a global change

« Robustness of the transfer (information or other) between two nodes or two regions of the network despite the presence perturbations.
« Mechanisms

« Diversion

» Existence of alternative paths
» Plasticrty

 The possibility of rewiring some connections;



FERC OLATION THECORE

+ Q:If a given fraction of nodes or edges are removed...
* how large are the connected components?

* what Is the average distance between nodes In the components
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size of giant component

FE RO O ATION [ HRESHICHSS

« Percolation threshold

* the point at which the giant
component emerges

* As the average degree increases to

average degree

" av deg = 0.99

D = |, a glant component suddenly
appears

AASEAAD + Edge removal is the opposite process

ANisekar. As the average degree drops below

N7 | the network becomes disconnected

* av deg = 1.18 "~ Y—lav deg = 3.96



g Al E-FREE INE T VVUIISS
RANDOM NE T WORK

» onutella network

e 209% of nodes removec

‘874 nodes in giant component . 427 nodes in giant component



B\ E FREE NET VIS
TARGE | HLD AL TACKS

» onutella network,

£ 7 most connected nodes removed (2.8% of the nodes)
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574 nodes in giant component | 301 nodes in giant component



RN OM VS, SCALE FREE NE TV
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REAL NETWORKS

Internet
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Source: Error and attack tolerance of complex networks.
Réka Albert, Hawoong Jeong #nd Albert-Laszlo Barabasi



INFORMATON FHECHRE

S(z) = —klog P(x)
* It P(X) 1s the weight we give to the presence of something, then H(x) becomes a

s; = —klogp;

fic sliee o1 Its absence !

¢ 1T P() Is very small, the large H(x) reflects that most of the time we do ROt e
the event

* [he indeterminacy of event
h; = —kp; log p;

» 01f p=0 or p=|

» Entropy is therefore the indeterminacy of an ensemble H(X) = —k ) , p; log p;

* A metric of the total capacity of the ensemble to undergo change



INEORMATION | HECHE

- Let's extend to relationships between events Sy ——Klog as

t;; = klog(pip;) — [—klog(pi;)] = klog (ﬁ@)
[(X; Y) = Zi,j Pi,j log pzj:zJ'
o

H(X)=H(X|Y)+ I(X;Y)

» the capacity for evolution or self-organization (H) toward
perturbation can be decomposed Into two components.

 Mutual iInformation

* Fundamental property

» Ascendency: [(X;Y) quantifying all that it regular, orderly,
coherent and efficient.

» Reserve : H(X|Y) representing the irregular, disorderly,
incoherent and inefficient behaviors.



Window of Viabils
: ‘ o =cty Real-life sustainable ecosystam:

Towards

stagnation
‘oo Iitte efficiency)

EVOLUTION FITNESS 7=,

J(X:Y) = I(X;Y) o

H(X) T Diversity & Interconnectivity

» Systems with small ascendency or reserve are not survivable
* Systems that endure lie somewhere between these extremes.

 We define the evolution fitness of a system by

o e los XY 0 S B

e R e



KORNER GRAPH ENTROPY

* A subset S of the verticesV of a graph G = (V, E) Is Independent If no edge in the
oraph has both endpoints in S.

B e d oraph O detine the graph entropy of G H(G) = minx,y I(X;Y)
* where the minimum is taken over all pairs of random variables X,Y such that
» X s a uniformly random vertex in G.
£ Independent set containing X

» Ex:for an unbalanced complete bipartite graph Km,n. H(Q) < H(=2)

m-+n

s operyy

e union) It G L, GK are the connected components of G, and for each |,

@@= (Gl (G Is the fraction of vertices in Gi, then HG) = Y g HiG,



BIBD> GRAPH EIN RO

» Coming from statistical physics

* A network ensemble Is formed by the set of network satisfying a given number of
constraints.

* A partition function Z counts the number of networks in the ensemble

Z = Z H5(constrajnt.k('{a‘-j})’)e" Licy2iaMy(@agya
{agy} K

e (GIbbs EDU‘OPY SR % log Z s.t. h;j(a) = 0;V(2, 7, @)

» Link probability mi(a) = g5 52
» Graph Shannon Entropy 2_i; Mij(a) log mij(a)

limN_mo D= Zi,j T4 (Oé) lOg Uvy (Oz)



el | RAL GRAPH THECHES

» Study the properties of graphs via the eigenvalues and eigenvectors of their associated graph matrices
» [ he adjacency matrix, the graph Laplacian and their variants.
» [hese matrices have been extremely well studied from an algebraic point of view.

 [he Laplacian allows a natural link between discrete representations (graphs), and continuous

representations, such as metric spaces and manifolds.

» Laplacian embedding consists In representing the vertices of a graph In the space spanned by the
smallest eigenvectors of the Laplacian

» A geodesic distance on the graph becomes a spectral distance in the embedded (metric) space.



mUIACEINCY MATRES

-or a graph with n vertices, the entries of the adjacency matrix are defined by:

g 1 1Ithere isan edge ¢,
A= ¢ a;; =0 if there is not an edge e;;

a/@@ S O v’ ) ) V.’

Vi Vi

RV o S
@R GD if——lan God)




AL VALUED FUNCTION OVER GIRATEE.

* We consider real-valued functions f:V — R on the set of the graph’s

vertices e = e

» Assigns a real number to each graph node. Jvo=2

» Notation: g AR g 3l fiv)=4.1

1— 9

1

f(v2)=3.5

f(va)=5

* [he eigenvectors of the adjacency matrix, can be viewed as eigenfunctions.
AX =X

» Quadratic form P A oL

1— 1]



INCIDENCE MATRIX

» Dual matrix of adjacency

» Matrix defined on the edge of the graph

Veow = —1, if vis the initial vertex of edge e ' - 9 8 ' e ) v
V = (¢ V., = +1, ifvis the terminal vertex of edge e R f

1| e

w . =0 if vi1s not 1n e

* [he mapping f — V{ Is known as the co-boundary mapping of f

-1 1 0 0° (f(l)) (f(?)f(l))

10 -1 0 || @ | _| r)-1@3)
0 -1 1 0 £(3) (3) - £(2)

0 -1 0 +1]\ f@4) f(4) - £(2)




e | APLACIAN MAT RS

(L) = Y (flv) — flvy);

U = UL

» Connection between Laplacian and Adjcency matrix

2 -1 -1 0 & V2
-1 -1 2 0
0 =3 0 1 V3 Vi

B e matrix =YW




PAATIELE
(L—2




PAATIELE

3 -1 -1 -1 0 0 0 0 0
-1 2 0 0 -1 0 0 0 0 O
-1 0 3 0 0 -1 -1 0 0 O
-1 0 0 3 -1 0 0 -1 0 0
r_|0o -1 0 -13 0 0 0 -1 0
0o 0 -1 0 0 4 -1 -1 0 -1
0 0 -1 0 0 -1 2 0 0 0
0o 0 0 -1 0 -1 0 4 -1 -1
0o 0 0 0 -1 0 0 -1 2 0
l 0o 0 0 0 0 -1 0 -1 0 2 J

A = [ 0.0000 0.7006 1.1306 1.8151 2.4011
3.0000 3.8327 4.1722 5.2014 5.7462 |



=X TENSION

» [aplacian for a weighted graph i1s definedas L=D-W

« W is the weight matrix, w;; = w(z;, z;)

D is a diagonal matrix with ~ dis = ) _w;,

J

» Laplacian regularization N(f)=f"Lf

» Normalized Laplacian LD W



PEDLER VALUE OF A GRS

* [he first non-null eigenvalue Ax11 1s called the Fiedler value.
* | he corresponding eigenvector Is called the riedler vector.

» [he Fiedler value Is the algebraic connectivity of a graph, the further

from O, the more connected.

* [he Fiedler vector has been extensively used for spectral partioning



WON NEUMANN ENTROREE

» Strongly related to spectral properties

of graph

* Based on the normalized laplacian L

Sy = — <T7°(L) log(L)>H

log(L) = Vlog(A)V’

» Relations with Shannon Entropy

Svn =1% + 0




L ONCEUSICHS

* We tried to formalize the trade-off between ascendency/reserve,
performance/plasticity, etc. ..

» Korner Graph Entropy seems to go toward the first term

* VVon Neumann one toward the second one



\S TWO HUMPS !




