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Boolean automata networks

Biology et computer science: a long story

Biology _ Computer science:
McCulloch & Pitts (1943): A logical calculus of the ideas immanent in
nervous activity
von Neumann (1966): Theory of self-reproducing automata
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The (theoretical) bio-informatics of automata networks
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Automata and configurations

The automata

V = {0, . . . ,n − 1}: a set of n automata

Sylvain Sené INs and their environment Diapositive 5/34



Boolean automata networks

Automata and configurations

0 1

23

The automata

V = {0, . . . ,n − 1}: a set of n automata

Sylvain Sené INs and their environment Diapositive 5/34



Boolean automata networks

Automata and configurations
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x0 =

x2 =

≈ active

≈ inactive

1

0

Their (Boolean) state

∀i ∈ V , xi ∈ B = {0,1}
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Boolean automata networks

Interactions between automata

1

23

0f0(x) = ¬x0 ∨ x1 ∧ x2 f1(x) = x0 ∧ (x1 ∨ x2)

f3(x) = x0 ∨ ¬x1 f2(x) = ¬x3

The architecture G = (V ,A) of the network – the interaction graph

A ⊆ V × V
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Interactions between automata
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0 f1(x) = x0 ∧ (x1 ∨ x2)
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The local transition functions
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Boolean automata networks

Automata network

1

23

0 f1(x) = x0 ∧ (x1 ∨ x2)

f3(x) = x0 ∨ ¬x1 f2(x) = ¬x3

f0(x) = ¬x0 ∨ x1 ∧ x3

The network N = {fi | i ∈ V}

defined as the set of n local transition functions

Sylvain Sené INs and their environment Diapositive 7/34



Boolean automata networks

Automata network centre and boundaries

Let G = (V ,A) be an arbitrary digraph and let N be an automata network with
G its interaction graph

� The eccentricity ε(u) of a vertex u ∈ V of G is the maximal distance (in
terms of graph) between u and any other vertex of G

� The centre of N is the set of vertices of G whose eccentricity is minimal
� The boundaries (i.e., the environment) of N is the set of sources of G
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Boolean automata networks

Automata updates

f3(x) = x0 ∨ ¬x1

f1(x) = x0 ∧ (x1 ∨ x2)

f2(x) = ¬x3

0101

0 1
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f0(x) = ¬x0 ∨ x1 ∧ x3
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Automata updates
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Automata network behaviour
Updating modes
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Boolean automata networks

Automata network behaviour
General updating mode
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Boolean automata networks

Automata network behaviour
Asynchronous updating mode
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Boolean automata networks

Automata network behaviour
Parallel updating mode
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Boolean automata networks

Automata network behaviour
Last definitions, well almost!
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From linear threshold Boolean PCA . . .

An insight with Majority

t = 10 t = 10

2 distincts attractors ⇐⇒ Impact of the environment
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From linear threshold Boolean PCA . . .

Linear threshold PCA

� Deterministic function (McCulloch & Pitts, 1943; Goles, 1980’s):

∀i ∈ V ,∀t , xi (t + 1) =

{
1 if

∑
j∈Ni

wi,j · xj (t)− θi > 0
0 otherwise
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� Deterministic function (McCulloch & Pitts, 1943; Goles, 1980’s):

∀i ∈ V ,∀t , xi (t + 1) =

{
1 if

∑
j∈Ni

wi,j · xj (t)− θi > 0
0 otherwise

� Probabilistic function:

∀i ∈ V ,∀t , P(xi (t + 1) = α | x(t)) =
eα · (

∑
j∈Ni

wi,j ·xj (t)−θi )/T

1 + e(
∑

j∈Ni
wi,j ·xj (t)−θi )/T

where T ∈ N is a "temperature" parameter such that:

(i) if T → 0, the deterministic function is retrieved,
(ii) if T → +∞, then:

∀i ∈ V , ∀t , P(xi (t) = 1) =
1
2
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From linear threshold Boolean PCA . . .

Attractive PCA at stake here

� Neighbourhoods of cell i :
→ Ni : the von Neumann neighbourhood (i and its nearest neighbours)
→ N ∗i = Ni \ {i}

We will only focus on PCA that are:

� attractive

� isotropic (a.k.a. totalistic)

� translation invariant

> 0

> 0

> 0

> 0

< 0

a
a

a
a

a

b
c

d
c

d
a

b
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From linear threshold Boolean PCA . . .

Global behaviour et stochastic process

� Stationary Markov chains:

∀t ∈ N∗, P(x(t + 1) = D | x(t) = E) = P(x(t) = D | x(t − 1) = E)

→ Markovian matrix P:

E
P =


P (x (t + 1) = D | x (t) = E)

q
pE,D


D

→ Invariant measure µ:

µy =
∑
x∈Bn

µx · px,y µ = µ · P
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From linear threshold Boolean PCA . . .

Method and general results
(Demongeot, Jézéquel & S., 2008; Demongeot & S., 2008)

Definition
(Dobrushin, 1968) N is not robust against its environment ⇐⇒ phase transition
⇐⇒ µ◦(R) 6= µ•(R).
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Method and general results
(Demongeot, Jézéquel & S., 2008; Demongeot & S., 2008)

Definition
(Dobrushin, 1968) N is not robust against its environment ⇐⇒ phase transition
⇐⇒ µ◦(R) 6= µ•(R).

Theorem
Linear PCA robustness does not depend on periodic updating modes.

Theorem
1-D PCA are entirely robust against their environment.

Theorem

Let u0 =
wi,i
T , u1 =

wi,j
T and d > 1. If d-D linear

PCA are non-robust against their environment,
then u0 + d · u1 = 0.
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. . . through an application to floral morphogenesis . . .

Floral morphogenesis of Arabidopsis thaliana
(Mendoza & Alvarez-Buylla, 1998)

EMF1

TFL1

LFY

AG

AP1

AP3

LUG

CAL

SUP

PI

UFO

Attractors Tissues
Fixed point 1 Sepals
Fixed point 2 Petals
Fixed point 3 Stamens
Fixed point 4 Carpels
Fixed point 5 Inflorescence
Fixed point 6 Mutant
Limit cycle 1 —

... ...
Limit cycle 7 —
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. . . through an application to floral morphogenesis . . .

Experimental results on the influence of Gibberellin
(Goto & Pharis, 1999)
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. . . through an application to floral morphogenesis . . .

Variation around the Mendoza network

Deterministic functions and sequential updating mode

EMF1
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LFY
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RGA

PI

UFO
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. . . through an application to floral morphogenesis . . .

Robustness against state perturbations

� Probability P(c → c′ | pk ) for configuration c to become c′ knowing
perturbation pk of k (given) elements:

P(c → c′ | pk ) = 0 or 1

� Probability P(c → c′ | k) for c to become c′ knowing any perturbation of
k elements:

P(c → c′ | k) =

∑
pk∈Pk

P(c → c′ | pk )(|V |
k

)
� Probability Pα(k) to make k state changes in c according to the state

perturbation rate α:

Pα(k) =

(
|V |
k

)
· αk · (1− α)|V |−k
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. . . through an application to floral morphogenesis . . .

Robustness against state perturbations

� Probability Pα(c → c′) for c to become c′ depending on α whatever k :

Pα(c → c′) =
n∑

k=0

(P(c → c′ | k) · Pα(k))

� Probability Pα(c → Bj ) for c to become a configuration of attraction basin
Bj :

Pα(c → Bj ) =
∑

c′∈Bj

Pα(c → c′)

� Probability Pα(Bi → Bj ) "to go" from Bi to Bj :

Pα(Bi → Bj ) =

∑
c∈Bi

Pα(c → Bj )

|Bi |
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. . . through an application to floral morphogenesis . . .

Robustness against state perturbations – Summary

Characteristic polynomials of the probabilities for initial configurations to
become configurations of other attraction basins according to a stochastic
parameter of state perturbation α:

Pα(Bi → Bj ) =
1
|Bi |
·
∑
c∈Bi

∑
k≤|V |

ak (c) · αk · (1− α)|V |−k ,

where ak (c) is the number of configurations c′ ∈ Bj located at Hamming
distance k to c.
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. . . through an application to floral morphogenesis . . .

Robustness against state perturbations – Results
(Demongeot, Goles, Morvan, Noual & S., 2010)
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. . . to nonlinear threshold Boolean PCA
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. . . to nonlinear threshold Boolean PCA

What are these objects?

� Reminder – the linear rule

∀i ∈ V ,∀t , P(xi (t + 1) = α | x(t)) =
eα · (

∑
j∈Ni

wi,j ·xj (t)−θi )/T

1 + e(
∑

j∈Ni
wi,j ·xj (t)−θi )/T

� Interaction potentials (functions of the interaction weights):

u1,i,j

u2,i,〈j1,j2〉

u4,i,〈j1,j2,j3,j4〉

u5,i,〈i,j1,j2,j3,j4〉

u0,i

po
te

nt
ia

ls
lin

ea
r

no
nl

in
ea

r
po

te
nt

ia
lsu3,i,〈j1,j2,j3〉
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. . . to nonlinear threshold Boolean PCA

What are these objects?

� Our probabilistic rule for CA of order k ≥ 2:

P(xi (t + 1) = 1 | x(t)) = Φi (x(t)) =
eu0+

∑
j∈N∗i

u1·xj (t)+ηk
i (x(t))

1 + eu0+
∑

j∈N∗i
u1·xj (t)+ηk

i (x(t))
,

where ηk
i (x(t)) is the nonlinear term and stands for accounting collective

interaction potentials such that:

ηk
i (x(t)) =



0 if k = 2,∑
j1,j2∈Ni

j1 6=j2
u2 · xj1 (t) · xj2 (t) if k = 3,∑

j1,...,jk−1∈Ni
j1 6=...6=jk−1

u2 · xj1 (t) · xj2 (t) + . . .

+uk−1 · xj1 (t) · . . . · xjk−1 (t) otherwise.

� Specific constraints:
� Finite PCA on Z2

� Isotropy (totalistic PCA)

� Arbitrarily large sizes

� ∀i, θi = 0

� u0 always taken into account

� u1 ≥ 0
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. . . to nonlinear threshold Boolean PCA

Environmental robustness

� Finite stationary Markov chains
� Perron-Frobenius theorem: convergence towards a unique invariant

measure µ
� Invariant measure ∼ attractor

General idea:

The PCA A and its boundary = the system S
Let S◦ and S• be two distinct instances of S
A admits a phase transition w.r.t. its boundary
conditions (or environment) when µ◦ 6= µ•

(Dobrushin, 1968)

Phase transition ⇐⇒ non-robustness of A

Main objective: characterise the family of PCA
non robust against their environment, that is
the values of interaction potentials u0, u1,
u2. . . under which phase transitions emerge
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. . . to nonlinear threshold Boolean PCA

Reduction of the problem
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. . . to nonlinear threshold Boolean PCA

The transfer matrix

µ ([{1, 2, 3, 4} , ∅]) + µ ([{2, 3, 4} , {1}]) = µ ([{2, 3, 4} , ∅])
µ ([{1, 2, 3, 4} , ∅]) + µ ([{1, 3, 4} , {2}]) = µ ([{1, 3, 4} , ∅])
µ ([{1, 2, 3, 4} , ∅]) + µ ([{1, 2, 4} , {3}]) = µ ([{1, 2, 4} , ∅])
µ ([{1, 2, 3, 4} , ∅]) + µ ([{1, 2, 3} , {4}]) = µ ([{1, 2, 3} , ∅])
µ ([{2, 3, 4} , {1}]) + µ ([{3, 4} , {1, 2}]) = µ ([{3, 4} , {1}])
µ ([{2, 3, 4} , {1}]) + µ ([{2, 4} , {1, 3}]) = µ ([{2, 4} , {1}])
µ ([{2, 3, 4} , {1}]) + µ ([{2, 3} , {1, 4}]) = µ ([{2, 3} , {1}])
µ ([{1, 3, 4} , {2}]) + µ ([{1, 4} , {2, 3}]) = µ ([{1, 4} , {2}])
µ ([{1, 3, 4} , {2}]) + µ ([{1, 3} , {2, 4}]) = µ ([{1, 3} , {2}])
µ ([{1, 2, 4} , {3}]) + µ ([{1, 2} , {3, 4}]) = µ ([{1, 2} , {3}])
µ ([{3, 4} , {1, 2}]) + µ ([{4} , {1, 2, 3}]) = µ ([{4} , {1, 2}])
µ ([{3, 4} , {1, 2}]) + µ ([{3} , {1, 2, 4}]) = µ ([{3} , {1, 2}])
µ ([{2, 4} , {1, 3}]) + µ ([{2} , {1, 3, 4}]) = µ ([{2} , {1, 3}])
µ ([{1, 4} , {2, 3}]) + µ ([{1} , {2, 3, 4}]) = µ ([{1} , {2, 3}])
µ ([{4} , {1, 2, 3}]) + µ ([∅, {1, 2, 3, 4}]) = µ ([∅, {1, 2, 3}])∑

[A,B]∈{0,1}|N
∗
o | Φo ([A,B]) · µ ([A,B]) = µ ([{o} , ∅])
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. . . to nonlinear threshold Boolean PCA

The transfer matrix

M =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Φ4
o Φ3

o Φ2
o Φ1

o Φ0
o


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. . . to nonlinear threshold Boolean PCA

A theoretical necessary condition for phase transitions

Theorem
If threshold attractive PCA of order k > 2 (nonlinear PCA) admit a phase
transition w.r.t. their environment, then∑

j∈N∗o u1

2
+
ηk

o (N ∗o )

2
= 0 ⇐⇒ DetM = 0

Idea of the proof
� A symmetric nonlinear term (∀K ⊆ N ∗i , ηk

i (N ∗i ) = ηk
i (K ) + ηk

i (N ∗i \ K ))
allows to counter-balance the influence of linear interaction potentials,
which is necessary for the emergence of phase transitions

� Show that the nonlinear term is symmetric iff u0 +
∑

j∈N∗o
u1

2 +
ηk

o (N
∗
o )

2 = 0
� Attractive PCA =⇒ Super-modularity (Preston, 1974; Demongeot, 1983)

and concavity

� Deduce that:
∑

j∈N∗o u1

2
+
ηk

o (N ∗o )

2
= 0 ⇐⇒ DetM = 0
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. . . to nonlinear threshold Boolean PCA

An empirical sufficient condition

Attractive PCA of order 3
and size 131× 131
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Perspectives

On-going works

� Towards a formal characteristation. . . ?

� Constraint relaxation to become closer to biology:
→ Attractiveness
→ Isotropy
→ Translation invariance
→ Perfect synchronism
→ . . .

� Integrating nonlinearity in genetic regulation networks is a way to bypass
(in parts of course) the sizes of problems:
→ Protein complexes in intra-cellular networks
→ Cell coalitions in extra-cellular networks
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On-going works

� Towards a formal characteristation. . . ?

� Constraint relaxation to become closer to biology:
→ Attractiveness
→ Isotropy
→ Translation invariance
→ Perfect synchronism
→ . . .

� Integrating nonlinearity in genetic regulation networks is a way to bypass
(in parts of course) the sizes of problems:
→ Protein complexes in intra-cellular networks
→ Cell coalitions in extra-cellular networks

� Other problematics:
→ Towards the study of the evolution of genetic regulation networks. . .
→ Towards a better understanding of the relation between regulations and

time. . .
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Super-modularity and concavity

Definition

A function g : Bn → R+ is super-modular iff

∀K ,L ⊆ Bn, g(K ∪ L) + g(K ∩ L) ≥ g(K ) + g(L). (1)

Definition

Let V be a set s.t. |V | = n. A function g : Bn → R+ is concave iff

∀K ,L ⊆ Bn, |K | ≥ |L|, g(K ) + g(V \ K ) ≤ g(L) + g(V \ L). (2)

Lemma

Let A be a PCA of order k > 2 in Z2 and size n, whose interaction graph is
G = (V ,A). If its local transition function f is super-modular and concave, then

∀K ⊆ Bn, f (V ) + f (∅) = f (K ) + f (V \ K ).
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