Interaction networks and their environment a basic view

Sylvain Sené

Archamps, June 10, 2014

Outline

- Boolean automata networks
- Prom linear threshold Boolean PCA
- 3 ... through an application to floral morphogenesis ...
 - ... to nonlinear threshold Boolean PCA

Boolean automata networks Outline

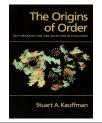
Boolean automata networks

- 2) From linear threshold Boolean PCA
- ... through an application to floral morphogenesis ...
- 4 to nonlinear threshold Boolean PCA

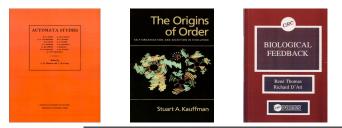
5 Perspectives

- Biology —> Computer science:
 - McCulloch & Pitts (1943): A logical calculus of the ideas immanent in nervous activity
 - von Neumann (1966): Theory of self-reproducing automata

- Biology —> Computer science:
 - McCulloch & Pitts (1943): A logical calculus of the ideas immanent in nervous activity
 - von Neumann (1966): Theory of self-reproducing automata
- Computer science →> Biology:
 - Kauffman (1969): Metabolic stability and epigenesis in randomly constructed genetic nets



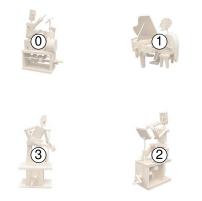
- Biology —> Computer science:
 - McCulloch & Pitts (1943): A logical calculus of the ideas immanent in nervous activity
 - von Neumann (1966): Theory of self-reproducing automata
- Computer science →> Biology:
 - Kauffman (1969): Metabolic stability and epigenesis in randomly constructed genetic nets
 - Thomas (1973): Boolean formalization of genetic control circuits



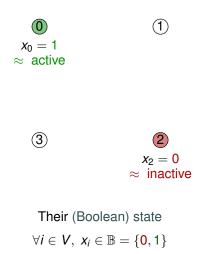
- Biology —> Computer science:
 - McCulloch & Pitts (1943): A logical calculus of the ideas immanent in nervous activity
 - von Neumann (1966): Theory of self-reproducing automata
- Computer science →> Biology:
 - Kauffman (1969): Metabolic stability and epigenesis in randomly constructed genetic nets
 - Thomas (1973): Boolean formalization of genetic control circuits
 - Robert (1969): Blocs-H-matrices et convergence des méthodes itératives classiques par blocs

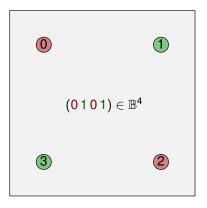
- Biology —> Computer science:
 - McCulloch & Pitts (1943): A logical calculus of the ideas immanent in nervous activity
 - von Neumann (1966): Theory of self-reproducing automata
- Computer science →> Biology:
 - Kauffman (1969): Metabolic stability and epigenesis in randomly constructed genetic nets
 - Thomas (1973): Boolean formalization of genetic control circuits
 - Robert (1969): Blocs-H-matrices et convergence des méthodes itératives classiques par blocs

The automata $V = \{0, \dots, n-1\}$: a set of *n* automata

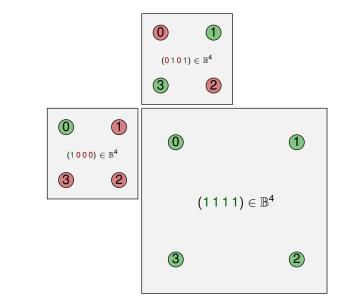


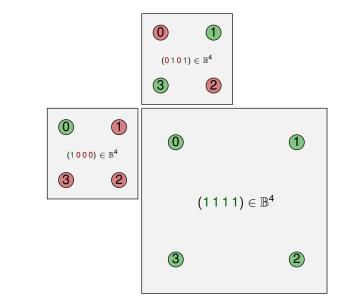
The automata $V = \{0, \dots, n-1\}$: a set of *n* automata



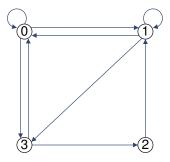






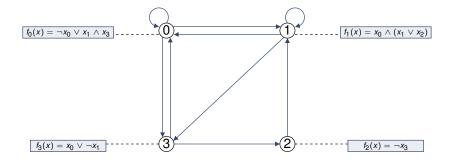


Boolean automata networks Interactions between automata



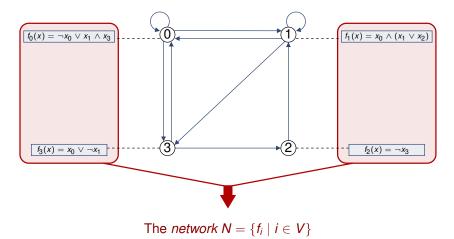
The architecture G = (V, A) of the network – the interaction graph $A \subset V \times V$

Boolean automata networks Interactions between automata



The local transition functions

Boolean automata networks Automata network

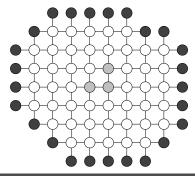


defined as the set of n local transition functions

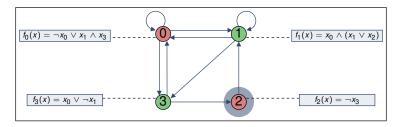
Boolean automata networks Automata network centre and boundaries

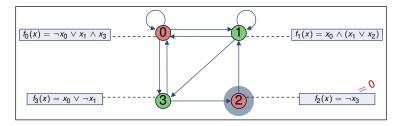
Let G = (V, A) be an arbitrary digraph and let N be an automata network with G its interaction graph

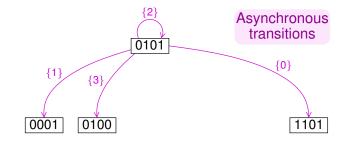
- ♦ The *eccentricity* $\epsilon(u)$ of a vertex $u \in V$ of *G* is the maximal distance (in terms of graph) between *u* and any other vertex of *G*
- The *centre* of *N* is the set of vertices of *G* whose eccentricity is minimal
- ◊ The *boundaries* (*i.e.*, the environment) of N is the set of sources of G

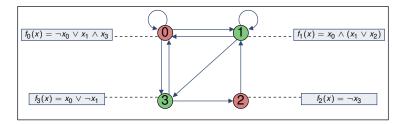


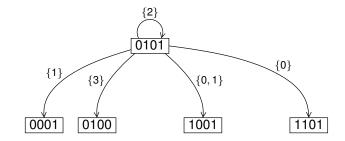
0101

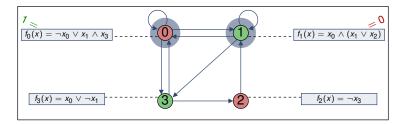


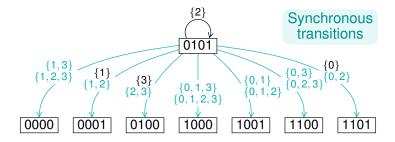


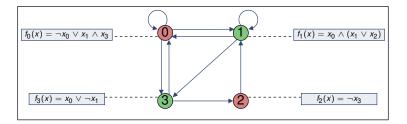












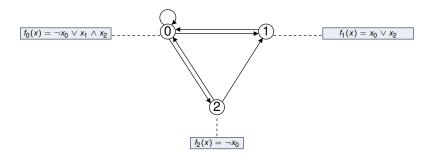
The updating mode	the network behaviour
-------------------	-----------------------

The updating mode defines the network behaviour

The updating mode **defines** the network behaviour

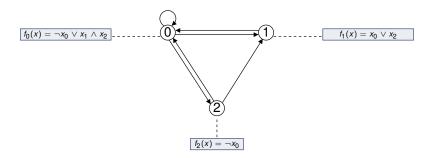
The updating mode **defines** the network behaviour

$$G = (\mathbb{B}^n, \mathbb{B}^n \times \mathbb{B}^n)$$



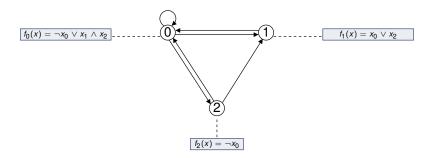
The updating mode **defines** the network behaviour

$$G = (\mathbb{B}^n, \mathbb{B}^n \times \mathbb{B}^n)$$



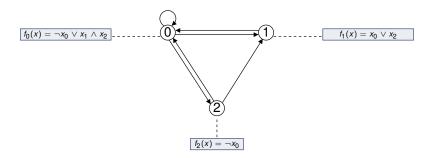
The updating mode **defines** the network behaviour

$$G = (\mathbb{B}^n, \mathbb{B}^n \times \mathbb{B}^n)$$



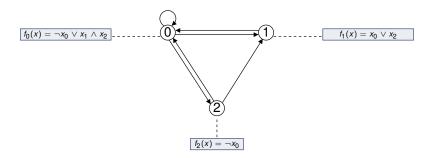
The updating mode **defines** the network behaviour

$$G = (\mathbb{B}^n, \mathbb{B}^n \times \mathbb{B}^n)$$



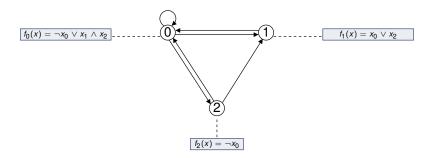
The updating mode **defines** the network behaviour

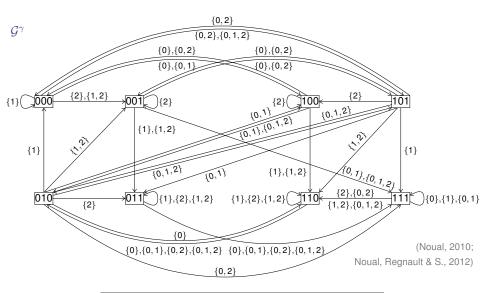
$$G = (\mathbb{B}^n, \mathbb{B}^n \times \mathbb{B}^n)$$



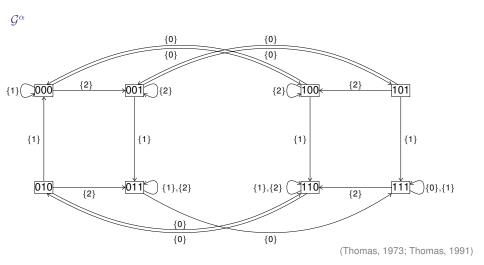
The updating mode **defines** the network behaviour

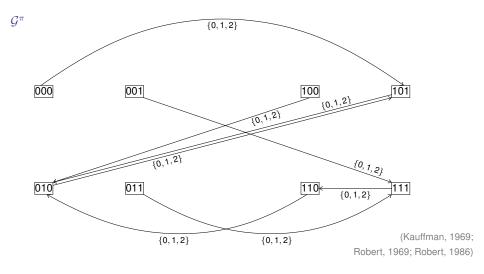
$$G = (\mathbb{B}^n, \mathbb{B}^n \times \mathbb{B}^n)$$



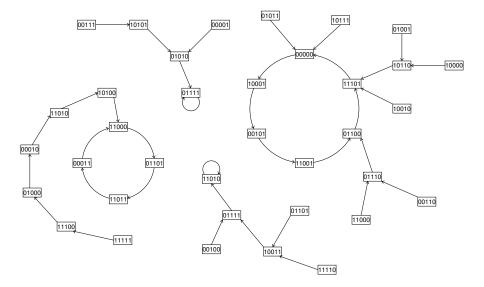


Boolean automata networks Automata network behaviour Asynchronous updating mode

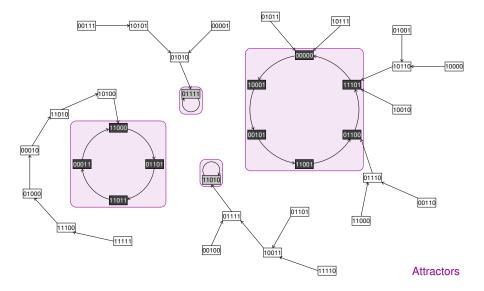




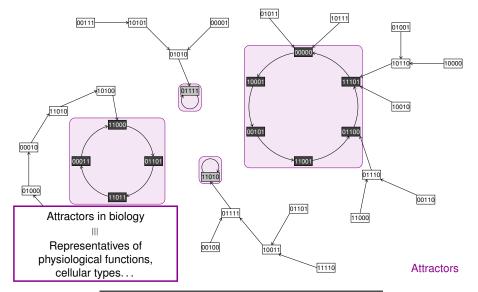
Boolean automata networks Automata network behaviour Last definitions, well almost!



Boolean automata networks Automata network behaviour Last definitions, well almost!



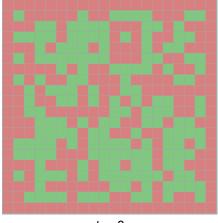
Boolean automata networks Automata network behaviour Last definitions, well almost!

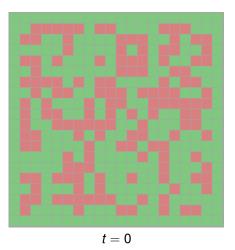


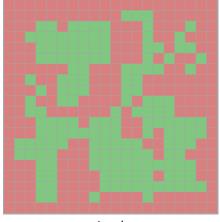
From linear threshold Boolean PCA... Outline

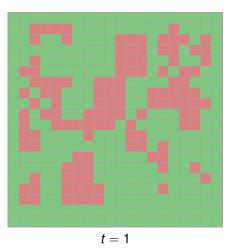
- From linear threshold Boolean PCA...
- ... through an application to floral morphogenesis ...
- ... to nonlinear threshold Boolean PCA

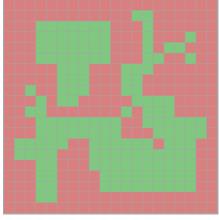
5 Perspectives



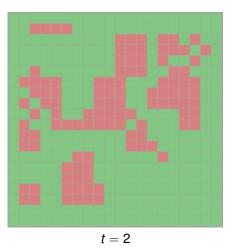




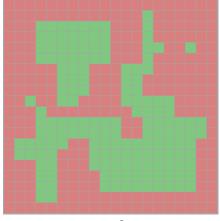


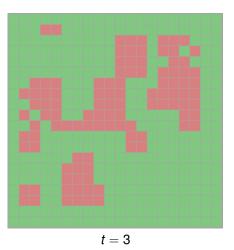


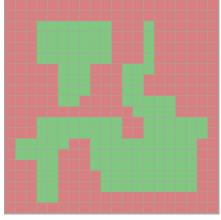
t = 2



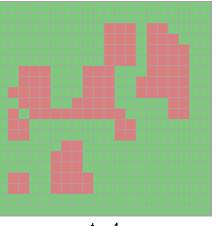
Sylvain Sené

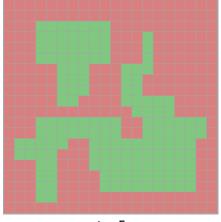


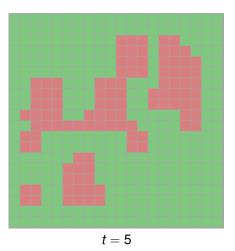


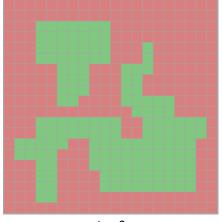


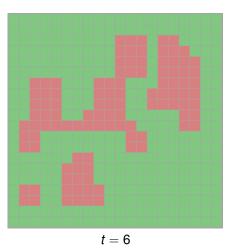
t = 4

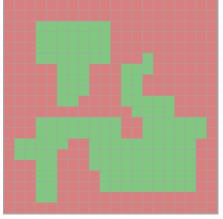


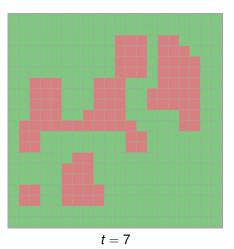


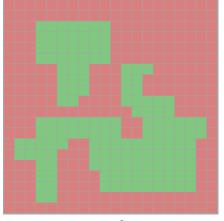


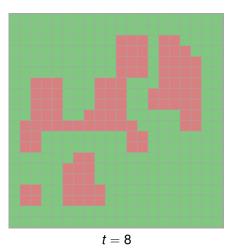


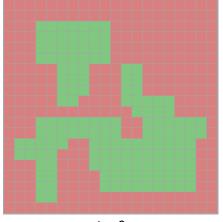


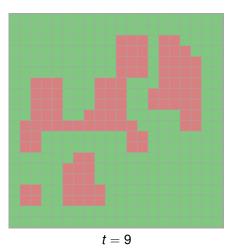


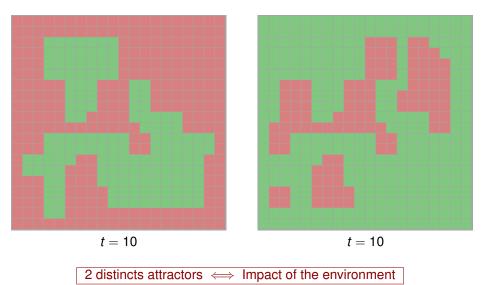












Sylvain Sené

INs and their environment

Diapositive 12/34

From linear threshold Boolean PCA... Linear threshold PCA

Oeterministic function (McCulloch & Pitts, 1943; Goles, 1980's):

$$\forall i \in V, \forall t, x_i(t+1) = \begin{cases} 1 & \text{if } \sum_{j \in \mathcal{N}_i} w_{i,j} \cdot x_j(t) - \theta_i > 0\\ 0 & \text{otherwise} \end{cases}$$

From linear threshold Boolean PCA... Linear threshold PCA

◊ Deterministic function (McCulloch & Pitts, 1943; Goles, 1980's):

$$\forall i \in V, \forall t, x_i(t+1) = \begin{cases} 1 & \text{if } \sum_{j \in \mathcal{N}_i} w_{i,j} \cdot x_j(t) - \theta_i > 0\\ 0 & \text{otherwise} \end{cases}$$

o Probabilistic function:

$$\forall i \in V, \forall t, \ P(x_i(t+1) = \alpha \mid x(t)) = \frac{e^{\alpha \cdot (\sum_{j \in \mathcal{N}_i} w_{i,j} \cdot x_j(t) - \theta_i)/T}}{1 + e^{(\sum_{j \in \mathcal{N}_i} w_{i,j} \cdot x_j(t) - \theta_i)/T}}$$

where $T \in \mathbb{N}$ is a "temperature" parameter such that:

- (i) if $T \rightarrow 0$, the deterministic function is retrieved,
- (ii) if $T \to +\infty$, then:

$$\forall i \in V, \forall t, P(x_i(t) = 1) = \frac{1}{2}$$

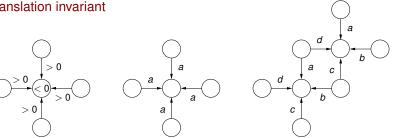
From linear threshold Boolean PCA ... Attractive PCA at stake here

Neighbourhoods of cell *i*: \diamond

> $\rightarrow \mathcal{N}_i$: the von Neumann neighbourhood (*i* and its nearest neighbours) $\rightarrow \mathcal{N}_i^* = \mathcal{N}_i \setminus \{i\}$

We will only focus on PCA that are:

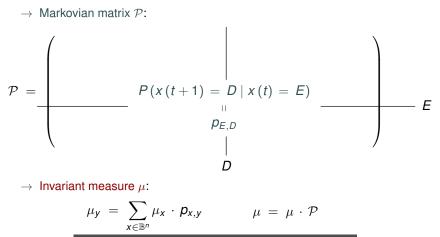
- ◊ attractive
- isotropic (a.k.a. totalistic) \diamond
- translation invariant



From linear threshold Boolean PCA... Global behaviour et stochastic process

Stationary Markov chains:

$$\forall t \in \mathbb{N}^*, \ P(x(t+1) = D \mid x(t) = E) = P(x(t) = D \mid x(t-1) = E)$$



Sylvain Sené

From linear threshold Boolean PCA... Method and general results

(Demongeot, Jézéquel & S., 2008; Demongeot & S., 2008)

Definition

(Dobrushin, 1968) N is not robust against its environment \iff phase transition $\iff \mu^{\circ}(R) \neq \mu^{\bullet}(R)$.

From linear threshold Boolean PCA... Method and general results

(Demongeot, Jézéquel & S., 2008; Demongeot & S., 2008)

Definition

(Dobrushin, 1968) N is not robust against its environment \iff phase transition $\iff \mu^{\circ}(R) \neq \mu^{\bullet}(R)$.

Theorem

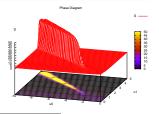
Linear PCA robustness does not depend on periodic updating modes.

Theorem

1-D PCA are entirely robust against their environment.

Theorem

Let $u_0 = \frac{w_{i,i}}{T}$, $u_1 = \frac{w_{i,j}}{T}$ and d > 1. If d-D linear PCA are non-robust against their environment, then $u_0 + d \cdot u_1 = 0$.



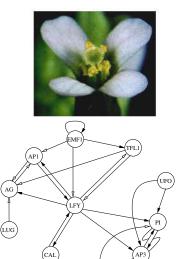
... through an application to floral morphogenesis ... Outline

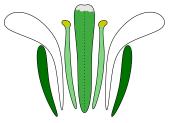
- 2) From linear threshold Boolean PCA
- In through an application to floral morphogenesis
 - 4 ... to nonlinear threshold Boolean PCA

5 Perspectives

... through an application to floral morphogenesis ... Floral morphogenesis of *Arabidopsis thaliana*

(Mendoza & Alvarez-Buylla, 1998)





Attractors	Tissues
Fixed point 1	Sepals
Fixed point 2	Petals
Fixed point 3	Stamens
Fixed point 4	Carpels
Fixed point 5	Inflorescence
Fixed point 6	Mutant
Limit cycle 1	—
:	:
Limit cycle 7	—

... through an application to floral morphogenesis ...

Experimental results on the influence of Gibberellin

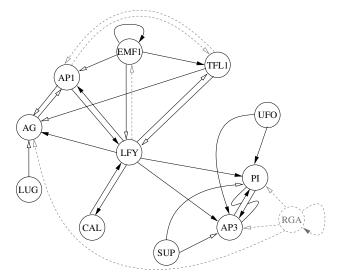
(Goto & Pharis, 1999)

Sylvain Sené

Diapositive 19/34

... through an application to floral morphogenesis ... Variation around the Mendoza network

Deterministic functions and sequential updating mode



... through an application to floral morphogenesis... Robustness against state perturbations

◇ Probability $P(c \rightarrow c' \mid p_k)$ for configuration *c* to become *c'* knowing perturbation p_k of *k* (given) elements:

$$P(c \rightarrow c' \mid p_k) = 0 \text{ or } 1$$

◇ Probability P(c → c' | k) for c to become c' knowing any perturbation of k elements:

$$P(\boldsymbol{c} \rightarrow \boldsymbol{c}' \mid \boldsymbol{k}) = \frac{\sum_{\boldsymbol{p}_k \in \boldsymbol{P}_k} P(\boldsymbol{c} \rightarrow \boldsymbol{c}' \mid \boldsymbol{p}_k)}{\binom{|\boldsymbol{V}|}{k}}$$

Probability *P_α(k)* to make *k* state changes in *c* according to the state perturbation rate *α*:

$$\mathcal{P}_{lpha}(k) = egin{pmatrix} |V| \ k \end{pmatrix} \cdot lpha^k \cdot (1-lpha)^{|V|-k}$$

... through an application to floral morphogenesis ... Robustness against state perturbations

♦ Probability $P_{\alpha}(c \rightarrow c')$ for c to become c' depending on α whatever k:

$$egin{aligned} P_lpha(m{c} o m{c}') \; = \; \sum_{k=0}^n (P(m{c} o m{c}' \mid k) \cdot P_lpha(k)) \end{aligned}$$

♦ Probability $P_{\alpha}(c \rightarrow B_j)$ for *c* to become a configuration of attraction basin B_j :

$$m{P}_lpha(m{c} o m{B}_j) \;=\; \sum_{m{c}' \in m{B}_j} m{P}_lpha(m{c} o m{c}')$$

◇ Probability $P_{\alpha}(B_i \rightarrow B_j)$ "to go" from B_i to B_j : $P_{\alpha}(B_i \rightarrow B_j) = \frac{\sum_{c \in B_i} P_{\alpha}(c \rightarrow B_j)}{|B_i|}$

Robustness against state perturbations – Summary

Characteristic polynomials of the probabilities for initial configurations to become configurations of other attraction basins according to a stochastic parameter of state perturbation α :

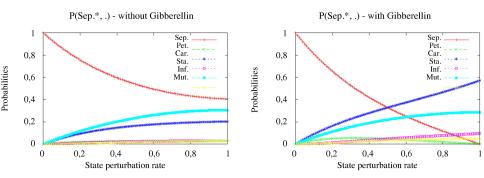
$$P_{\alpha}(B_i
ightarrow B_j) = rac{1}{|B_i|} \cdot \sum_{\boldsymbol{c} \in B_i} \sum_{k \leq |V|} a_k(\boldsymbol{c}) \cdot \alpha^k \cdot (1-\alpha)^{|V|-k},$$

where $a_k(c)$ is the number of configurations $c' \in B_j$ located at Hamming distance *k* to *c*.

... through an application to floral morphogenesis ...

Robustness against state perturbations – Results

(Demongeot, Goles, Morvan, Noual & S., 2010)



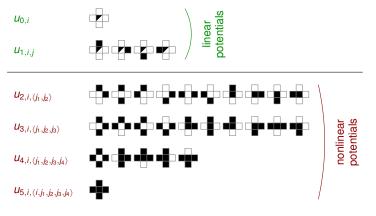
... to nonlinear threshold Boolean PCA Outline

- 2) From linear threshold Boolean PCA....
- ... through an application to floral morphogenesis ...
- 4 ... to nonlinear threshold Boolean PCA

5 Perspectives

... to nonlinear threshold Boolean PCA What are these objects?

- ◇ Reminder the linear rule $\forall i \in V, \forall t, \ P(x_i(t+1) = \alpha \mid x(t)) = \frac{e^{\alpha \cdot (\sum_{j \in \mathcal{N}_i} w_{i,j} \cdot x_j(t) \theta_i)/T}}{1 + e^{(\sum_{j \in \mathcal{N}_i} w_{i,j} \cdot x_j(t) \theta_i)/T}}$
- Interaction potentials (functions of the interaction weights):



...to nonlinear threshold Boolean PCA What are these objects?

♦ Our probabilistic rule for CA of order $k \ge 2$:

$$P(x_i(t+1) = 1 | x(t)) = \Phi_i(x(t)) = \frac{e^{u_0 + \sum_{j \in \mathcal{N}_i^*} u_1 \cdot x_j(t) + \eta_i^k(x(t))}}{1 + e^{u_0 + \sum_{j \in \mathcal{N}_i^*} u_1 \cdot x_j(t) + \eta_i^k(x(t))}},$$

where $\eta_i^k(x(t))$ is the *nonlinear term* and stands for accounting collective interaction potentials such that:

$$\eta_i^k(x(t)) = \begin{cases} 0 & \text{if } k = 2, \\ \sum_{j_1, j_2 \in \mathcal{N}_i} u_2 \cdot x_{j_1}(t) \cdot x_{j_2}(t) & \text{if } k = 3, \\ \sum_{j_1 \neq j_2} \sum_{j_1, \dots, j_{k-1} \in \mathcal{N}_i} u_2 \cdot x_{j_1}(t) \cdot x_{j_2}(t) + \dots \\ + u_{k-1} \cdot x_{j_1}(t) \cdot \dots \cdot x_{j_{k-1}}(t) & \text{otherwise.} \end{cases}$$

Specific constraints:

- $\diamond~$ Finite PCA on \mathbb{Z}^2
- Isotropy (totalistic PCA)
- Arbitrarily large sizes

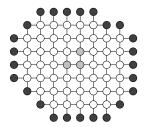
- $\diamond \forall i, \theta_i = 0$
- $\diamond u_0$ always taken into account

$$\diamond u_1 \ge 0$$

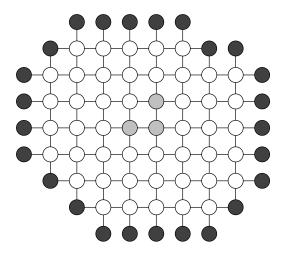
Sylvain Sené

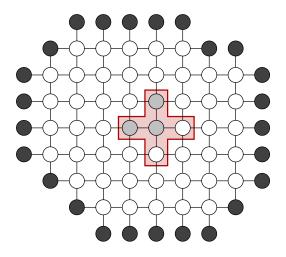
... to nonlinear threshold Boolean PCA Environmental robustness

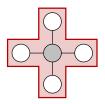
- Finite stationary Markov chains
- $\diamond~$ Perron-Frobenius theorem: convergence towards a unique invariant measure μ
- \diamond Invariant measure \sim attractor
- General idea:

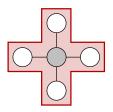


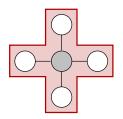
- The PCA \mathcal{A} and its boundary = the system \mathcal{S}
- Let \mathcal{S}° and \mathcal{S}^{\bullet} be two distinct instances of \mathcal{S}
- A admits a phase transition w.r.t. its boundary conditions (or environment) when μ° ≠ μ[•] (Dobrushin, 1968)
- $\bullet~$ Phase transition $\iff~$ non-robustness of $\mathcal A$
- Main objective: characterise the family of PCA non robust against their environment, that is the values of interaction potentials u₀, u₁, u₂... under which phase transitions emerge

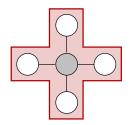


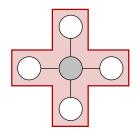


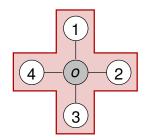


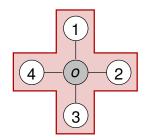












... to nonlinear threshold Boolean PCA The transfer matrix

$(\mu(\{1,2,3,4\},\emptyset]) + \mu(\{2,3,4\},\{1\}])$	$= \mu([\{2,3,4\},\emptyset])$
$\mu([\{1,2,3,4\},\emptyset]) + \mu([\{1,3,4\},\{2\}])$	$= \mu([\{1,3,4\},\emptyset])$
$\mu\left(\left[\{1,2,3,4\},\emptyset\right]\right) + \mu\left(\left[\{1,2,4\},\{3\}\right]\right)$	$= \mu([\{1,2,4\},\emptyset])$
$\mu\left(\left[\{1,2,3,4\},\emptyset\right]\right) + \mu\left(\left[\{1,2,3\},\{4\}\right]\right)$	$= \mu([\{1,2,3\},\emptyset])$
μ ([{2,3,4}, {1}]) + μ ([{3,4}, {1,2}])	$= \mu([{3,4},{1}])$
$\mu([\{2,3,4\},\{1\}]) + \mu([\{2,4\},\{1,3\}])$	$= \mu([\{2,4\},\{1\}])$
$\mu([\{2,3,4\},\{1\}]) + \mu([\{2,3\},\{1,4\}])$	$= \mu([\{2,3\},\{1\}])$
$\mu([\{1,3,4\},\{2\}]) + \mu([\{1,4\},\{2,3\}])$	$= \mu([\{1,4\},\{2\}])$
$\mu([\{1,3,4\},\{2\}]) + \mu([\{1,3\},\{2,4\}])$	$= \mu([\{1,3\},\{2\}])$
$\mu\left(\left[\{1,2,4\},\{3\}\right]\right) + \mu\left(\left[\{1,2\},\{3,4\}\right]\right)$	$= \mu([\{1,2\},\{3\}])$
$\mu\left(\left[\left\{3,4\right\},\left\{1,2\right\}\right]\right) \ + \ \mu\left(\left[\left\{4\right\},\left\{1,2,3\right\}\right]\right)$	$= \mu([{4}, {1,2}])$
$\mu([\{3,4\},\{1,2\}]) + \mu([\{3\},\{1,2,4\}])$	$= \mu([{3}, {1,2}])$
$\mu\left(\left[\{2,4\},\{1,3\}\right]\right) + \mu\left(\left[\{2\},\{1,3,4\}\right]\right)$	$= \mu([\{2\}, \{1,3\}])$
$\mu([\{1,4\},\{2,3\}]) + \mu([\{1\},\{2,3,4\}])$	$= \mu([\{1\},\{2,3\}])$
$\mu([\{4\},\{1,2,3\}]) + \mu([\emptyset,\{1,2,3,4\}])$	$= \mu([\emptyset, \{1, 2, 3\}])$
$\sum_{[A,B]\in\{0,1\}^{ \mathcal{N}_{o}^{*} }}\Phi_{o}\left([A,B]\right)\cdot\mu\left([A,B]\right)$	$= \mu ([\{ o \}, \emptyset])$

... to nonlinear threshold Boolean PCA The transfer matrix

	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
$\mathcal{M}=$	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
		1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
		1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
		0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
		0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
		0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
		0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	
		0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	
		0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	
		0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	
		0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	
		0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	
		0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	
		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	
	(Φ_o^4		¢	3 0		Φ_o^2							¢	Φ_o^0)		

... to nonlinear threshold Boolean PCA

A theoretical necessary condition for phase transitions

Theorem

If threshold attractive PCA of order k > 2 (nonlinear PCA) admit a phase transition w.r.t. their environment, then

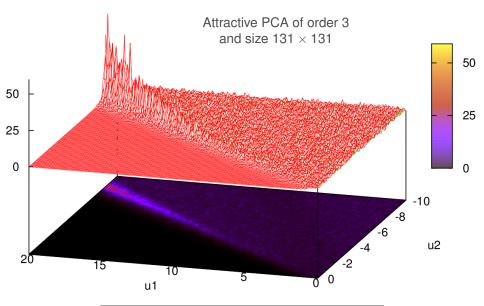
$$\frac{\sum_{j\in\mathcal{N}_o^*}u_1}{2}+\frac{\eta_o^k(\mathcal{N}_o^*)}{2}=0\iff \textit{Det}\mathcal{M}=0$$

Idea of the proof

- ♦ A symmetric nonlinear term ($\forall K \subseteq N_i^*, \eta_i^k(N_i^*) = \eta_i^k(K) + \eta_i^k(N_i^* \setminus K)$) allows to counter-balance the influence of linear interaction potentials, which is necessary for the emergence of phase transitions
- ♦ Show that the nonlinear term is symmetric iff $u_0 + \frac{\sum_{j \in \mathcal{N}_0^*} u_1}{2} + \frac{\eta_0^k(\mathcal{N}_0^*)}{2} = 0$
- ◊ Attractive PCA ⇒ Super-modularity (Preston, 1974; Demongeot, 1983) and concavity

◊ Deduce that:
$$\frac{\sum_{j \in \mathcal{N}_o^*} u_1}{2} + \frac{\eta_o^k(\mathcal{N}_o^*)}{2} = 0 \iff \text{Det}\mathcal{M} = 0$$

... to nonlinear threshold Boolean PCA An empirical sufficient condition



Perspectives Outline

- 2) From linear threshold Boolean PCA
- ... through an application to floral morphogenesis ...
- ... to nonlinear threshold Boolean PCA

5 Perspectives

Perspectives On-going works

- o Towards a formal characteristation...?
- Constraint relaxation to become closer to biology:
 - → Attractiveness
 - \rightarrow Isotropy
 - \rightarrow Translation invariance
 - \rightarrow Perfect synchronism
 - $\rightarrow \dots$
- Integrating nonlinearity in genetic regulation networks is a way to bypass (in parts of course) the sizes of problems:
 - \rightarrow Protein complexes in intra-cellular networks
 - \rightarrow Cell coalitions in extra-cellular networks

Perspectives On-going works

- Towards a formal characteristation...?
- Constraint relaxation to become closer to biology:
 - → Attractiveness
 - \rightarrow Isotropy
 - \rightarrow Translation invariance
 - \rightarrow Perfect synchronism
 - $\rightarrow \dots$
- Integrating nonlinearity in genetic regulation networks is a way to bypass (in parts of course) the sizes of problems:
 - \rightarrow Protein complexes in intra-cellular networks
 - → Cell coalitions in extra-cellular networks

- ◊ Other problematics:
 - ightarrow Towards the study of the evolution of genetic regulation networks...
 - $\rightarrow\,$ Towards a better understanding of the relation between regulations and time. . .

Thanks and credits

Jacques Demongeot

 $\diamond \ \, \text{Eric Goles}$

o Michel Morvan

Mathilde Noual

Chank you for your attention

Super-modularity and concavity

Definition

A function $g: \mathbb{B}^n \to \mathbb{R}^+$ is *super-modular* iff

$$orall K,L\subseteq \mathbb{B}^n,\;g(K\cup L)+g(K\cap L)\geq g(K)+g(L).$$

Definition

Let *V* be a set s.t. |V| = n. A function $g : \mathbb{B}^n \to \mathbb{R}^+$ is *concave* iff

 $\forall K, L \subseteq \mathbb{B}^n, |K| \ge |L|, \ g(K) + g(V \setminus K) \le g(L) + g(V \setminus L).$ (2)

Lemma

Let \mathscr{A} be a PCA of order k > 2 in \mathbb{Z}^2 and size n, whose interaction graph is G = (V, A). If its local transition function f is super-modular and concave, then

$$\forall K \subseteq \mathbb{B}^n, f(V) + f(\emptyset) = f(K) + f(V \setminus K).$$