From tilings to fibers

Archamps

L. Vuillon and C. Lesieur June 12, 2014

Laboratoire de Mathématiques Université de Savoie

Outline

Proteins and interfaces
(2) Tilings of the plane
(3) Fibers

Proteins

PROTEIN: sequence of amino acids that folds and realises a biological function

α-coiled interface

1- Crick FHC (1953). Acta Crystallogr 6: 689-697.
2- Lupas A (1996). Trends Biochem Sci 21: 375-382.

Focus on one interface geometry: two aligned β-strands

D: 96-103, E: 23-31

* less understood than α-coil; "planar" geometry: much less constrained than α
* many pathologies (Alzheimer, Parkinson, cholera, ...)
classes: continuous β-sheet, β-sandwich

In the cell

Circle

Circles

FIGure: Heptamer 4H56 in the PDB with each chain adjacent to 2 other chains. Remark that in the beta barrel the adjacency between pairs of chains is the same as in the other part of the heptamer. This implies an oligomerization with exactly 1 interface.

Figure: Abstract view of C_{4} symmetry. A tetramer formed by a single interface between the part $/$ and \bar{l}. Each chain is adjacent via the interface to exactly 2 other chains

Figure: Protein oligomers and fibers. A. Protein oligomer. Cholera toxin B pentamer ($C t x B_{5}$) is shown (PDB code 3CHB). B. Oligomer to fiber transition. Each monomer is indicated by a different color.

Tilings of the plane

Définition

A polyomino is the interior of a closed non intersecting path in a square lattice.

Tilings of the plane

Definitions

A tiling by translation of a polyomino P is a covering of \mathbb{R}^{2} by translation of copies of P without overlapping or hole.

Tilings by translation

Tilings of the plane

Isometries of the plane : translation, rotation, reflection and glide reflection.
17 crystalographic groups for the plane (Bravais 1847).

The 17 crystallographic groups are represented at the Alhambra of Grenada (by artists around 1350).

Cristallographic groups

Tilings of the plane by translation

Definitions

Let bw be a boundary word of P, i.e. a word on the alphabet $\{a, b, \bar{a}, \bar{b}\}$ where a codes right step, b up step, \bar{a} left step and \bar{b} down step which codes the boundary of the polyomino P.

bw is defined up to circular permutations of letters.

Beauquier-Nivat's Theorem

Theorem [Beauquier-Nivat 1991]

A polyomino P tiles the plane by translation if and only if the boundary word bw of P is equal to $X Y Z \bar{X} \bar{Y} \bar{Z}$ or $X Y \bar{X} \bar{Y}$ with $X, Y, Z \in\{a, b, \bar{a}, \bar{b}\}^{*}$ and where
$\bar{w}=\overline{w_{1} w_{2} \cdots w_{n}}=\bar{w}_{n} \bar{w}_{n-1} \cdots \bar{w}_{1}$ with $w_{i} \in\{a, b, \bar{a}, \bar{b}\}$.

Tiling models

According to Beauquier-Nivat's Theorem, we have 2 ways of tilings the plane by translations:

If the boundary word is $X Y Z \bar{X} \bar{Y} \bar{Z}$, we talk about pseudo-hexagon.
If the boundary word is $X Y \bar{X} \bar{Y}$, we talk about pseudo-square.

Tilings by translation

Lattice periodic tilings

Definition

A tiling is called lattice periodic if it is invariant under the translation by two non-collinear vectors.

a)

b)

FIGURE: Tiling by a mino and the 4 adjacent tiles of the grey mino

FIgure: Tiling of the plane by a domino like a pseudo square and the 4 adjacent tiles of the grey domino

FIGURE: Tiling of the plane by a domino like a pseudo hexagon and the $\mathbf{6}$ adjacent tiles of the grey domino

Figure: A thin cross that doesn't tile the plane

FIGURE: Two regular tilings of the plane by the same polyomino

FIGURE: Spider silk.

From regular tilings of the plane to tilings of a fiber

FIGURE: From tiling to cylinder by using the translation of 8 times the vector \vec{e}_{1}.

FIGURE: Two boundaries in correspondence by the translation $\left.4 \vec{v}_{1}+2 \vec{v}_{2}\right)$

FIGURE: Fiber with a pseudo square shape. Each tile is surrounded by 4 tiles.

Figure: Tobacco Mosaic Virus.

Figure: Tobacco Mosaic Virus : an example of tiling of a fiber with 4 adjacent chains.

Figure: Tobacco Mosaic Virus : a 17-mer.

FIGURE: Fiber with a pseudo hexagon shape. Each tile is surrounded by 6 tiles. Remark that pseudo hexagon shapes appear in particular when there is a tilt on the fiber.

FIGURE: 3J1R : an example of tiling of a fiber with 6 adjacent chains.

From fold plasticity to fibers : the P53 case

FIgure: A. The p53 tetrameric domain is made of $\mathbf{2}$ dimers. Each monomer is made of a β-strand followed by a small helix ended by a long α-helix parallel to the β-strand (1SAK). The residue R337 is sensitive to mutation.

Tiling fibers by n-mers

FIGURE: Fiber 3J2U with a tetramer inside each pseudo hexagon

FIGURE: Fiber with a dimer inside each pseudo hexagon

FIGURE: Replacement of each pseudo square by a tetramer.

FIGURE: Replacement of a pseudo square and of a pseudo hexagon.

FIGURE: Replacement of pseudo square by 2 non regular pentamers.

FIGURE: Double asymmetrical pentamer (Tachylectin).

From 1-periodical tiling to fibers

Figure: Non regular tiling with dominoes. The grey domino is surrounded by 5 dominoes thus this tiling is certainly not regular. Remark that the horizontal strips are invariant by the horizontal vector \vec{v}_{1} and also by the vector $3 \vec{v}_{1}$. Thus we are able to map the left border to the right border in order to form a non bounded height cylinder.

FIGURE: Non regular tiling and stair case shape.

