

MIcro-tpc MAtrix of Chambers A Large TPC for Directional non baryonic Dark Matter detection

Daniel Santos

Laboratoire de Physique Subatomique et de Cosmologie (LPSC-Grenoble) (UJF Grenoble 1 -CNRS/IN2P3-INPG)

MIMAC:

(MIcro-tpc MAtrix of Chambers)

LPSC (Grenoble) : F. Mayet , J. Lamblin (6/2011- 9/2013), D. Santos J. Billard (Ph.D) (left in July 2012), Q. Riffard (Ph.D) (started in October 2012) Technical Coordination : O. Guillaudin

- Electronics :
- Gas detector :
- Data Acquisition:
- Mechanical Structure :
- Ion source (quenching) :

- G. Bosson, O.Bourrion, J-P. Richer, J.L. Bouly O. Guillaudin, A. Pellisier
- **O. Bourrion, T. Descombes** (started 10/2013)
- Ch. Fourel, J. Giraud, S. Roudier, M. Marton
- J-F. Muraz

IRFU (Saclay): (2007-2010, 9/2013): P. Colas, E. Ferrer-Ribas, I. Giomataris Rui de Oliveira (Cern)

CCPM (Marseille): J. Busto, Ch. Tao, D. Fouchez, J. Brunner Neutron facility (AMANDE) : **IRSN (Cadarache):** L. Lebreton, D. Maire (Ph. D.)

LPNHE – 26 juin 2014

At the galaxy cluster scale...

(1E0657-558) Z= 0.296

Non-baryonic matter is 6 times more important than baryonic one...

Matière sombre non-baryonique : halo galactique

Modèle standard de halo galactique :

Sphère isotherme et isotrope

référence pour comparaisons

Valeurs de référence :

$$- \rho_0 = 0,3 \ GeV/c^2/cm^3 \iff 0,2-0,8 \ GeV/c^2/cm^3 \\ - v_0 = 220 \ km/s \iff 20-30\%$$

Alternatives :

- Halo ellipsoïdal (triaxial)
- Anisotrope
- En rotation ?

Détection directe : principes

En tenant compte de la distribution de vitesse f(v), du facteur de forme F(q) :

Détection directe : scalaire vs axial

Interaction WIMP-quark :

Interaction scalaire :

$$\sigma_{SI}(^{A}X) \propto \sigma_{SI}(p) \times A^{4}$$

Noyaux lourds : Ge, Xe, ...

Interaction axiale : (couplage spin)

$$\sigma_{SD}(^{A}X) \propto \sigma_{SD}(p) \times A^{2}$$

Noyaux de spin non-nuls : ¹H, ³He, ¹⁹F, Ou fraction isotopique (⁷³Ge, ¹²⁹Xe)

Interactions faiblement corrélées

Stratégies de détection complémentaires

Détection directe : contenus en spin

Noyau	J^{π}	$<{\rm S_p}>$	$<{\rm S_n}>$	Ref.	frac. iso.	Expériences
$^{3}\mathrm{He}$	$1/2^{+}$	-0,021	0,462	[42]	100 %	MIMAC
$^{19}\mathrm{F}$	$1/2^{+}$	0,441	-0,109	[43]	100 %	MIMAC, COUPP [44], Picasso [45]
$^{73}\mathrm{Ge}$	$9/2^{+}$	0,030	0,378	[46]	7,73 %	Edelweiss [47], CDMS [48]
127 I	$5/2^{+}$	0,309	0,075	[49]	100~%	KIMS [50]
$^{129}\mathrm{Xe}$	$1/2^{+}$	0,028	0,359	[49]	26,4 %	Xenon [51], Zeplin III [52]
$^{131}\mathrm{Xe}$	$3/2^{+}$	-0,041	-0,236	[53]	21,2 %	Xenon [51], Zeplin III [52]
$^{133}\mathrm{Cs}$	$7/2^{+}$	-0,370	0,003	[54]	100~%	KIMS [50]

	Modèle	$< S_p >$	$< S_n >$ Ref.
¹⁹ F : contenu en spin selon	odd-group	0.5	0.
ies auleurs	Pacheco & Strottman 0.441 -	-0.109 [43]	
	Divari <i>et al</i> .	0.475	-0.0087 [68]

Last results in Direct Dark Matter Detection (SCDMS-February 2014)

Spin-independent Scattering Constraints

90% C.L. optimal interval upper limit, no background subtraction, treating all observed (eleven) events as WIMP candidates

Directional detection : principle

 $<\!\!V_{rot}\!\!> \sim 220 \ km/s$

« A wind of WIMPS coming from the Cygnus constellation »

The signature able to correlate the events found to the galactic halo !

LPNHE – 26 juin 2014

Angular modulation of WIMP flux

Modulation is sidereal (tied to stars) not diurnal (tied to Sun)

LPNHE – 26 juin 2014

LPNHE – 26 juin 2014

10⁸ Events with $E_R = [5,50]$ keV

100 WIMP evts + 100 Background evts

LPNHE – 26 juin 2014

Phenomenology: Discovery

```
J. Billard et al., PLB 2010
J. Billard et al., arXiv:1110.6079
```

Proof of discovery: Signal pointing toward the Cygnus constellation

Blind likelihood analysis in order to establish the galactic origin of the signal

Directional Detection : identification

J. Billard et al., PRD 2011

8 parameters simultaneouly constrained by only one experiment

LPNHE – 26 juin 2014

The MIMAC project

A low pressure multi-chamber detector
Energy and 3D Track measurements
Matrix of chambers (correlation)
μTPC : Micromegas technology
CF₄, CHF₃, and ¹H : σ(A) dependency
Axial and scalar weak interaction

Directionnal detector

Bi-chamber module 2 x (10.8x 10.8x 25 cm³)

Strategy:

•Directional direct detection

- Energy (Ionization) AND 3D-Track of the recoil nuclei
- •Prove that the signal "comes from Cygnus"

Ionization Quenching Facility at LPSC-Grenoble

Low energy ion source
1 to 50 keV
Developped @LPSC

Ionization Quenching Factor Measurements at LPSC-Grenoble

LPNHE – 26 juin 2014

Ionization Quenching Measurements: 5keV ¹⁹F « recoil » in 60 mbar 40mbar CF₄+16.8mbar CHF₃+1.2 mbar Isobutane

Ionization Quenching Factors

Simulations and Measurements (LPSC)

Ligne de quenching portable (COMIMAC)

MIMAC: Detection strategy

Scheme of a MIMAC µTPC

Evolution of the collected charges on the anode

Measurement of the ionization energy: Charge integrator connected to the grid

LPNHE – 26 juin 2014

MIMAC 100x100 mm²(v2) (designed by IRFU- Saclay (France))

LPNHE – 26 juin 2014

MIMAC electronics (512 channels)

Entirely developed (ASICs included) by the MIMAC team at the LPSC-Grenoble (France)

V1: 2007 (192 channels for the 3cm x3cm) ASIC-Mimac (16 channels)

V2: 2009 (512 channels for the 10cmx10cm) ASIC-Mimac (64 channels)

V3: 2011 (upgraged version) 512 channels

LPNHE – 26 juin 2014

3D Tracks: Drift velocity

Magboltz Simulation

• New mixed gas MIMAC target : $CF_4 + x\% CHF_3$ (x=30)

LPNHE – 26 juin 2014

MIMAC: Performance at low energies

MIMAC validation with neutrons

Neutron monochromatic field:

AMANDE facility at IRSN of Cadarache

– Neutrons with a well defined energy from resonances of ⁷Li by a (p,n) reaction

« Gamma rejection »

from the background of an in beam proton reaction (2.5 MeV) (50 mbar : $C_4H_{10} + 30\%$ CHF₃) E_{max} (neutrons)=127 keV

Measurement of the ionization energy and the 3D track

Electron/Recoil discrimination measurement

@ Amande Facility (IRSN Cadarache):

Neutron field production reaction:

Experiment with and without Li

Electron/Recoil discrimination measurement

Cut on track density vs normalized rise-time

$$10^{-5}$$
 electron - recoil discrimination

Measurement of 127 keV neutrons at Cadarache (D.Maire et al. (2014), IEEE)

MIMAC bi-chamber module

- Two detectors with a common cathode (mylar 24um (6/2012), 12um (6/2013))
- Active volume = 2x(25x10.8x10.8) cm³ ~ 5.81
- Gas mixture 70% CF_4 + 28% CHF_3 + 2% C_4H_{10}

at 50 mbar

• Gas circulation system with a buffer volume, a pressure regulator and a

charcoal filter) ibration system with a rator (by fluorescence)

LPNHE – 26 juin 2014

MIMAC (bi-chamber module)at Modane Underground Laboratory (France) since June 22nd 2012

-working at 50 mbar (CF₄+28% CHF₃+2% C₄H₁₀)

-in a permanent circulating mode-Remote controlled and commanded-Calibration control twice per week

Many thanks to LSM staff

Calibration – Chamber2 (at Modane) fluorescence of Cd-(Cr-Fe)-Cu

LPNHE – 26 juin 2014

MIMAC Calibration (Modane)

Calibration:

X-ray generator to produce fluorescence photons from metal foils (Cd, Fe, Cu) Once a week

Low energy detector calibration.

MIMAC-2012 results Circulation cut α -particles rate: Event rate [evt/min] 6 Alpha particles 5 $R_{\alpha} \approx 4 \, \mathrm{evt} / \mathrm{min}$ V_{Gain} = 450 V 3 2 Circulation cut → Exponential decreasing 9×10⁻¹ 8×10⁻¹ 30/08 19/07 02/08 16/08 13/09 27/09 11/10

Compatible with the α -decay of the 222 Rn (3.8 days)

2012 date

 $(\alpha - \text{decay})$

An alpha particle crossing the detector (as an illustration of the MIMAC observables)

LPNHE – 26 juin 2014

A "recoil event" (~ 34 keVee)

LPNHE – 26 juin 2014

A "recoil" event (~ 40 keVee)

LPNHE – 26 juin 2014

An Electron event (18 keV)

MIMAC - Observables

Flash-ADC observables:

Ionization energy
$$E_{ioni}^{ADC} = S_{max} - S_{min} \rightarrow E_{ioni}^{keV} = a \times E_{ioni}^{ADC} + b$$

Normalized rise-time τ/E_{ioni}

Track observables:

Track density

Slot duration

Track projected width

 Image: space state state

Track mean projected difussion (<deltaX> < deltaY>) (MPD)

MIMAC - Observables

Definitions Flash-ADC:

- Energy: $E = A_{\text{max}} A_{\text{min}}$
- Rise-time: $\tau \rightarrow \tau/E_{ioni}$
- Peak number
- Fit results : χ^2
 - Peak position: μ

- Peak width:
$$\sigma_1 + \sigma_2$$

- Peak asymmetry:
$$r = \sigma_1/\sigma_2$$

Definitions track:

- Slot duration Δt_{slot}
- (X,Y) Fiducialisation
- Track homogeny (No clusters)
- Track density $ho_{
 m track} = \sum N^i_{px} / \Delta X_i \Delta Y_i$
- Mean Projected Diffusion (MPD) $\overline{\mathcal{D}} = \ln \left(\Delta X \times \Delta Y \right)$

Electron/recoil discrimination

Cut: Optimisation of the separation

Spectrum of nuclear recoil tracks detected at Modane (coming from the ²²²Rn chain decay, surface events) and the alpha particles through the cathode...

LPNHE – 26 juin 2014

Event rate of alphas at Modane in Ch2 (validation of the source of alphas (²²²Rn))

LPNHE – 26 juin 2014

D. Santos (LPSC Grenoble)

Rn progeny events

²²²Rn progeny events in ionization energy (MIMAC)

Recoil	Recoil Energy [keV]	Ionization Quenching factor (SRIM) [%]	Ionization Energy (SRIM) [keV]	Ionization Energy measured [keV]
²¹⁸ Po	100.79	37.93	38.23	32
²¹⁴ Pb	112.27	39.10	43.90	34
²¹⁰ Pb	146.52	40.12	58.78	45

2012 Data (53 days)

D. Santos (LPSC Grenoble)

Simulation of ¹⁹F recoils diffusion observable (MDP) of 10, 20 and 30 keV kinetic energies in the MIMAC detector

LPNHE – 26 juin 2014

D. Santos (LPSC Grenoble)

MPD

LPNHE – 26 juin 2014

D. Santos (LPSC Grenoble)

Energy Spectrum with the MPD > 2.5 cut.

LPNHE – 26 juin 2014

D. Santos (LPSC Grenoble)

LPNHE – 26 juin 2014

D. Santos (LPSC Grenoble)

$MIMAC - 1m^3 = 16$ bi-chamber modules (2x 35x35x26 cm³)

- i) New technology anode 35cmx35cm (resistive uM adaptation)
- ii) Stretched thin grid at 500um.
- iii) New electronic board (640 channels)
- iv) Only one big chamber

New 20cmx20cm pixellized anode (1024 channels) LPNHE – 26 juin 2014

Exclusion curves for MIMAC (1 and 50 m³)

LPNHE – 26 juin 2014

 \rightarrow A discovery (>3 σ @90%CL) with BKG is possible down to 10⁻³-10⁻⁴ pb LPNHE – 26 juin 2014

Directional Dark Matter: discovery/exclusion

J. Billard *et al.*, PLB 2010J. Billard *et al.*, PRD 2010

Conclusions

- i) A new directional detector of nuclear recoils at low energies has been developed giving a lot of flexibility on targets, pressure, energy range...
- ii) Ionization quenching factor measurements have been determined experimentally.
- iii) Phenomenology studies performed by the MIMAC team show the impact of this kind of detector.
- iv) MIMAC bi-chamber module has been installed at Modane
 Underground Laboratory in June 2012. An upgraded version in June 2013.
- v) For the first time the 3D nuclear recoil tracks from the Rn progeny have been observed.
- vi) New degrees of freedom are available to discriminate electrons from nuclear recoils to improve the DM search for.
- vii) The 1 m³ will be the validation of a new generation of DM detector including directionality (the ultimate signature for DM)

You are all welcome to participate in this challenge

LPNHE – 26 juin 2014