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Figure 18. BAO in the power spectrum measured from the reconstructed
CMASS data (solid circles with 1σ errors, lower panel) compared with un-
reconstructed BAO recovered from the SDSS-II LRG data (solid circles
with 1σ errors, upper panel). Best-fit models are shown by the solid lines.
The SDSS-II data are based on the sample and power spectrum calculated in
Reid et al. (2010) and analysed by Percival et al. (2010); it has been shifted
to match the fiducial cosmology assumed in this paper. Clearly the CMASS
errors are significantly smaller than those of the SDSS-II data, and we also
benefit from reconstruction, reducing the the BAO damping scale.

Figure 19. A plot of the distance-redshift relation from various BAO mea-
surements from spectroscopic data sets. We plot DV (z)/rs times the fidu-
cial rs to restore a distance. Included here are this CMASS measurement,
the 6dF Galaxy Survey measurement at z = 0.1 (Beutler et al. 2011), the
SDSS-II LRG measurement at z = 0.35 (Padmanabhan et al. 2012a; Xu
et al. 2012; Mehta et al. 2012), and the WiggleZ measurement at z = 0.6
(Blake et al. 2011a). The latter is a combination of 3 partially covariant data
sets. The grey region is the 1 σ prediction from WMAP under the assump-
tion of a flat Universe with a cosmological constant (Komatsu et al. 2011).
The agreement between the various BAO measurements and this prediction
is excellent.

Figure 20. The BAO distance-redshift relation divided by the best-fit flat,
ΛCDM prediction from WMAP (Ωm = 0.266, h = 0.708; note that
this is slightly different from the adopted fiducial cosmology of this paper).
The grey band indicates the 1 σ prediction range from WMAP (Komatsu
et al. 2011). In addition to the SDSS-II LRG data point from Padmanabhan
et al. (2012a), we also show the result from Percival et al. (2010) using a
combination of SDSS-II DR7 LRG and Main sample galaxies as well as
2dF Galaxy Redshift Survey data; because of the overlap in samples, we
use a different symbol. The BAO results agree with the best-fit WMAP
model at the few percent level. If Ωmh

2 were 1 σ higher than the best-
fit WMAP value, then the prediction would be the upper edge of the grey
region, which matches the BAO data very closely. For example, the dashed
line is the best-fit CMB+LRG+CMASS flat ΛCDM model from § 9, which
clearly is a good fit to all data sets. Also shown are the predicted regions
from varying the spatial curvature to ΩK = 0.01 (blue band) or varying
the equation of state to w = −0.7 (red band).

place the acoustic peak at other nearby locations and particularly
at smaller scales is rejected at 8 σ.

Fig. 18 repeats this comparison with the power spectrum from
the SDSS-II LRG analysis presented in Reid et al. (2010) and Per-
cival et al. (2010). This analysis did not use reconstruction, but one
can see good agreement in the BAO and significant improvement
in the error bars with the CMASS sample.

In Fig. 19, we plot DV (z) constraints from measurements of
the BAO from various spectroscopic samples. In addition to the
SDSS-II LRG value at z = 0.35 (Padmanabhan et al. 2012a) and
the CMASS consensus result at z = 0.57, we also plot the z =
0.1 constraint from the 6dF Galaxy Survey (6dFGS) (Beutler et al.
2011) and a z = 0.6 constraint from the WiggleZ survey (Blake
et al. 2011a). WiggleZ quotes BAO constraints in 3 redshift bins,
but these separate constraints are weaker and there are significant
correlations between the redshift bins. We choose here to plot their
uncorrelated data points for 0.2 < z < 1.0. Each data point here is
actually a constraint on DV (z)/rs, and we have multiplied by our
fiducial rs to get a distance.

As described further in Mehta et al. (2012), the WMAP curve
on this graph is a prediction, not a fit, assuming a flat ΛCDM cos-
mology. For each value of Ωmh

2 and Ωbh
2, one can predict a sound

horizon, and the angular acoustic scale measured by WMAP plus
the assumptions about spatial curvature and dark energy equation
of state then provide a very precise breaking of the degeneracy be-
tween Ωm and H0 and hence a unique DV (z)/rs. Taking the 1σ
range of Ωmh

2 and Ωbh
2 produces the grey band in Fig. 19. There

is excellent agreement between all four BAO measurements and the
WMAP ΛCDM prediction.

c� 2011 RAS, MNRAS 000, 2–33

•  Minimal ΛCDM preferred model (with General Relativity) 
•  The Universe is dominated by Dark Energy which causes the 

acceleration of the expansion 

(BOSS  Collaboration  2012)	
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•  We know H(z) at <10% level but .... models are degenerate! 

What is the origin of the acceleration of the expansion of 
the Universe: DE or modified gravity? 

(BOSS  Collaboration  2012)	
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc−1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ×Bm(k/α), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter α as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc−1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
�

n

W (ki, kn)P (kn)m −W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
∆k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB − 1)e−k2Σ2
nl/2 + 1, (34)

where the damping scale Σnl is a fitted parameter. We assume
a Gaussian prior on Σnl with width ±2h−1 Mpc, centred on
8.24h−1 Mpc for pre-reconstruction fits and 4.47h−1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

Cosmology  from  galaxy  
spatial  distribution	


(Anderson  et  al.  2012,  Reid  et  al.  2012)	
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Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξ"(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξ"(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

C"1"2i j =
1

599

600∑

k=1

(
ξk"1 (si) −  ξ"1 (si)

) (
ξk"2 (s j) −  ξ"2 (s j)

)
, (7)

where ξk" (si) is the monopole (" = 0) or quadrupole (" = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξ"(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

C"1"2,red
i j = C"1"2i j /

√
C"1"1ii C"2"2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,

c© 0000 RAS, MNRAS 000, 1–1
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Redshift-­‐‑space  distortions	

•  Galaxy spatial distribution from z-

surveys is distorted due to galaxy 
peculiar motions 

Elongation  on  small  scales:	


  Finger-­‐‑of-­‐‑God  effect	


Squashing  on  large  scales:  	


«  Kaiser  »  effect	


Real-space 

Redshift-space 

Figure 2 The redshift-space correlation function for the 2dFGRS, ξ(σ, π),
plotted as a function of transverse (σ) and radial (π) pair separation. The func-
tion was estimated by counting pairs in boxes of side 0.2 h−1 Mpc (assuming an
Ω = 1 geometry), and then smoothing with a Gaussian of rms width 0.5 h−1 Mpc.
To illustrate deviations from circular symmetry, the data from the first quadrant
are repeated with reflection in both axes. This plot clearly displays redshift
distortions, with ‘fingers of God’ elongations at small scales and the coherent
Kaiser flattening at large radii. The overplotted contours show model predic-
tions with flattening parameter β ≡ Ω0.6/b = 0.4 and a pairwise dispersion of
σp = 400 km s−1. Contours are plotted at ξ = 10, 5, 2, 1, 0.5, 0.2, 0.1.

The model predictions assume that the redshift-space power spectrum
(Ps) may be expressed as a product of the linear Kaiser distortion and a radial
convolution14: Ps(k) = Pr(k) (1 + βµ2)2 (1 + k2σ2

pµ2/2H2
0 )−1, where µ = k̂ · r̂,

and σp is the rms pairwise dispersion of the random component of the galaxy ve-
locity field. This model gives a very accurate fit to exact nonlinear simulations15.
For the real-space power spectrum, Pr(k), we take the estimate obtained by de-
projecting the angular clustering in the APM survey13,16. This agrees very well
with estimates that can be made directly from the 2dFGRS, as will be discussed
elsewhere. We use this model only to estimate the scale dependence of the
quadrupole-to-monopole ratio (although Fig. 2 shows that it does match the full
ξ(σ, π) data very well).

The presence of bias is an inevitable consequence of the nonlinear nature of galaxy for-
mation, and the relation between mass and galaxy tracers is complex18,19,20. However,
there are good theoretical reasons to expect that b can indeed be treated as a constant
on large scales, where the density fluctuations are linear21,22. Redshift-space distortions

4

(Peacock  et  al.  2001)	


The  linear  
component  of  
these  distortions  
maps  coherent  
motions  induced  
by  the  growth  of  
structure	




•  First measurement of fσ8 at z=0.8 
•  15% accuracy on fσ8 with the first epoch data of VIPERS 
•  Measurements in agreement with ΛCDM and Einstein gravity (GR) 
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Fig. 19. A plot of fσ8 versus redshift, showing VIPERS result contrasted with a compilation of recent measurements. The previous results from
2dFGRS (Hawkins et al. 2003), 2SLAQ (Ross et al. 2007), VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al.
2011), WiggleZ (Blake et al. 2011), BOSS (Reid et al. 2012), and 6dFGS (Beutler et al. 2012) surveys are shown with the different symbols (see
inset). The solid curve corresponds to the prediction for General Relativity in a ΛCDM model with WMAP9 parameters, while the dashed, dotted,
and dot-dashed curves are respectively Dvali-Gabadaze-Porrati (Dvali et al. 2000), f (R), and coupled dark energy model expectations. For these
models, the analytical growth rate predictions given in di Porto et al. (2012) have been used.

that are robust, and which can be used as a trustworthy test of
the nature of gravity at high redshifts.

As explained earlier, we assume a fixed shape of the mass
power spectrum consistent with the cosmological parameters ob-
tained from WMAP9 (Hinshaw et al. 2012) and perform a max-
imum likelihood analysis on the data, considering variations in
the parameters that are not well determined externally. The best-
fitting models are shown in Fig. 17 when considering either a
Gaussian or a Lorentzian damping function. Although the mock
samples tend to slightly prefer models with Lorentzian damping
as seen in Fig. 16, we find that the Gaussian damping provides
a much better fit to the real data and we decided to quote the
corresponding fσ8 as our final measurement.

We measure a value of

f (z = 0.8)σ8(z = 0.8) = 0.47 ± 0.08, (30)

which is consistent with the General Relativity prediction in a
flat ΛCDM Universe with cosmological parameters given by
WMAP9, for which the expected value is f (0.8)σ8(0.8) = 0.45.
The marginalised likelihood distribution of fσ8 is shown super-
imposed on the mock results in Fig. 18. We see that the preferred
values of the growth rate are consistent with the mocks, in terms
of the width of the likelihood function being comparable to the
scatter in mock fitted values. To illustrate the degree of flatten-
ing of the anisotropic correlation function induced by structure
growth, we show in the middle and bottom panels of Fig. 14
ξ(rp, π) for two MD mocks for which the measured fσ8 roughly
coincide with the 1σ limits around the best-fit fσ8 value ob-
tained in the data. We therefore conclude that the initial VIPERS
data prefer a growth rate that is fully consistent with predictions
based on standard gravity. Our measurement of fσ8 is also in
good agreement with previous measurements at lower redshifts

as shown in Fig. 19. In particular, it is compatible within 1σwith
the results obtained in the VVDS (Guzzo et al. 2008) and Wig-
gleZ (Blake et al. 2011) surveys at a similar redshift, although
WiggleZ measurements tend to suggest fσ8 values diminishing
with redshift faster than expected in standard gravity (but see
Contreras et al. 2013).

8. Conclusions

We have analysed in this paper the global real- and redshift-
space clustering properties of galaxies in the VIPERS survey
first data release. We have presented the selection function of
the survey and the corrections that are needed in order to derive
estimates of galaxy clustering that are free of observational bi-
ases. This has been achieved by using a large set of simulated
mock realizations of the survey to quantify in detail the system-
atics and uncertainties on our clustering measurements.

The first data release of about 54000 galaxies at 0.5 < z < 1.2
in the VIPERS survey allows a measurement of the real-space
clustering of galaxies through the measurement of the projected
two-point correlation function, to an unprecedented accuracy
over 0.5 < z < 1.2. This permits detailed modelling of the
halo occupation distribution at these redshifts to be carried out.
From an initial HOD modelling of B-band luminosity selected
samples, we have been able to accurately determine the charac-
teristic halo masses for halo occupation in the redshift interval
0.5 < z < 1.0. These measurements are invaluable for creating
realistic synthetic mock samples.

The main goal of VIPERS is to provide an accurate mea-
surement of the growth rate of structure through the character-
isation of the redshift-space distortions in the galaxy clustering
pattern. With the first data release we have been able to provide
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Fig. 17. Monopole and quadrupole moments of the redshift-space
correlations, as a function of scale. The shallow curves show the results
for the 26 individual MultiDark simulation mocks; the points are for the
measured VIPERS data at 0.7 < z < 1.2, with assigned error bars based
on the scatter in the mocks. The solid and dotted lines correspond to the
best fitting models to the data for model B with Gaussian or Lorentzian
damping function respectively.

In the models, the bias and growth rate parameters b and
f are degenerate with the normalization of the power spectra
parameter σ8. Thus, in practice only the combination of bσ8
and fσ8 can be constrained if no assumption is done on the ac-
tual value of σ8. This can be done by renormalizing the power
spectra in the models so that Pxx(k, z) → Pxx(k, z)/σ2

8(z), thus
reparameterizing the models such that the parameters (b, f ) are
replaced by (bσ8, fσ8) in Eq. 27. This parameterization can
be used for model A and B, although it is not for model C in
which the correction term CA involves the additional combi-
nations: b

2
fσ4

8, b f
2σ4

8, and f
3σ4

8 (see Taruya et al. 2010; de
la Torre & Guzzo 2012). The correction term CA, which par-
tially describes the effects of the non-linear coupling between
the damping and Kaiser terms, mostly affects the monopole and
quadrupole moments of the redshift-space power spectrum on
scales of k > 0.1 (Taruya et al. 2010). Therefore, in principle CA

could help breaking the degeneracy between f and σ8 although
this has to be verified in detail. In the end, in the case of model
C we decided to treat ( f , b,σ8,σv) as separate parameters in the
fit.

7.4. Detailed tests against mock data

We perform the redshift-space distortion analysis of the VIPERS
data in the context of a flat ΛCDM cosmological model. Be-
fore considering the redshift-space distortions in the data, we
first test the methodology and expected errors on fσ8 using the
mock samples. We fix the shape of the mass non-linear power
spectrum to that of the simulation (since the observed real-space
correlations are of high accuracy) and perform a likelihood anal-
ysis of each individual MD mock. In the case of model C we also
fix the normalisation of the power spectrum as discussed above.
The distribution of best-fitting fσ8 values gives us a direct esti-
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Fig. 18. Marginalized likelihood distribution of fσ8 in the data (solid
curve) and distribution of fitted values of fσ8 for the 26 individual Mul-
tiDark simulation mocks (histogram). These curves show a preferred
value and a dispersion in the data that is consistent at the 1σ level with
the distribution over the mocks.

mate of the probability distribution function of the parameter for
a given fitting method, and serves as a check on the errors from
the full likelihood function. We estimate the median and 68%
confidence region of the distribution. These are shown in Fig.
16 for the different models presented in the previous section and
for various minimum scales smin in the fit.

Model A is known to be the most biased model (e.g. Oku-
mura & Jing 2011; Bianchi et al. 2012; de la Torre & Guzzo
2012) and our results confirm these findings. We thus decided
not to describe in the following the detailed behaviour of this
model and focus on models B and C. We find that in general
model B tends to be less biased than model C, which is surpris-
ing at first sight as model C is the most advanced and supposed
to be the most accurate (Kwan et al. 2012; de la Torre & Guzzo
2012). This could be due to the quite restricted scales that we
consider and the limited validity of its implementation on scales
below s � 10 h

−1 Mpc, as the maximum wavenumber to which
we can predict Pδθ and Pθθ is about k = 0.3. We defer the investi-
gation of this issue to the redshift-space distortion analysis of the
final sample and concentrate here on model B. The shape of the
damping function in the models also affects the recovered fσ8,
as expected given the minimum scales we consider, although in
the case of model B the change in fσ8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at the
price of slightly larger systematic error. Therefore from this test
we decided to use model and a compromise value for the mini-
mum scale of smin = 6 h

−1 Mpc.

7.5. The VIPERS result for the growth rate

These comprehensive tests of our methodology give us con-
fidence that we can now proceed to the analysis of the real
VIPERS data and expect to achieve results for the growth rate
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Simulating  surveys	


•  Mock samples are crucial to test estimators and have realistic 
error estimates, in particular for cosmological analysis 

•  VIPERS probes a large volume and a wide range of 
luminosities/stellar masses: difficult to find N-body DM 
simulations large enough with sufficient mass resolution to 
build realisations of the survey 

Mock  survey	




•  Galaxy mock resolution 
limited by DM simulation 
(halo) mass resolution 

 
•  Minimum halo mass too 

high to include faintest 
galaxies 

How to solve this 
issue? 
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Beat  resolution  limit  in  
simulations	


•  Novel method based on reconstructing the density field from 
original haloes and sample it using constraints from the 
conditional halo mass function: 

 

 
 
 
•  This allows to reconstruct simulated haloes and galaxies as 

faint observed in VIPERS volumes 

Reconstructing the halo distribution below the resolution limit 3
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Figure 1. Comparison of the continuous density fields of original (left panels) and reconstructed haloes (right panels) in a slice of 500×250×15h−3 Mpc3

from the Millennium simulation, for two cuts in halo mass corresponding to m < 1011.5 h−1 M⊙ (top panels) and m < 1011 h−1 M⊙ (bottom panels).
In the m < 1011.5 h−1 M⊙ case, the reconstruction used a grid of size G = 2.5h−1 Mpc, while in the m < 1011 h−1 M⊙ case, a grid of size
G = 1h−1 Mpc was used.

dark matter haloes have been identified from the dark matter par-
ticle distribution using a friends-of-friends algorithm and we use
only the haloes identified in the snapshots at z = 0.1. The min-
imum halo mass in the Millennium and MultiDark halo cata-
logues are respectively mlim = 1010.5 h−1 M⊙ and mlim =
1011.5 h−1 M⊙.

We estimate the halo density field by measuring the halo den-
sity contrast defined as δh(r) = (N(r)−�N�)(�N�) where N(r)
and �N� are respectively the number of haloes in a cell centred
at position r and the mean number of haloes per cell. Given the
halo number density, the optimal choice of cell size falls between
2.5h−1 Mpc and 5h−1 Mpc, so to have a few haloes per cell on
average. We choose a grid size of G = 2.5h−1 Mpc and esti-
mate the halo density field using different methods: the grid-based
method with Nearest Grid Point (NGP) and Cloud-In-Cell (CIC)
assignment schemes and the Delaunay Tessellation (DT) method.
We choose haloes above a limit between 1010 and 1011.5 h−1 M⊙
and reconstruct the smaller haloes using the conditional mass func-
tion of Equation (5). In this test, we assumed for b(m) and n(m)
the forms calibrated on N-body simulations by Tinker et al. (2008)
and Tinker et al. (2010). The output of the reconstruction is illus-
trated in Fig. 1, which shows the spatial distribution of original and
reconstructed haloes in a thin slice of the Millennium simulation.

To test the accuracy of the method we perform the reconstruc-
tion on the MultiDark simulation, which gives us a better probe
of the large-scale halo clustering. We measure the halo bias in the
low-mass regime from the reconstructed halo catalogue. The halo
bias has been estimated by first measuring the halo power spec-
trum P (k) and then taking the square root of the ratio between the
halo power spectrum and that of mass. In this, we assumed the non-

linear mass power spectrum given by CosmicEmu (Lawrence et al.
2010).

The recovered halo biases in mass bins below the resolu-
tion limit are shown in Fig. 2, which compares the results of us-
ing different estimates of the halo density field as well as dif-
ferent biasing models. In this figure, the measured halo bias is
shown as a function of the wavenumber for the three mass bins:
1010 < m < 1010.5 h−1 M⊙, 1010.5 < m < 1011 h−1 M⊙,
and 1011 < m < 1011.5 h−1 M⊙. We find that the DT method as
implemented in the DTFE code (Cautun & van de Weygaert 2011)
provides better results than the grid-based estimator with CIC and
NGP assignment schemes. The large-scale bias, expected to asymp-
tote to linear theory predictions, is in very good agreement with the
predictions of Tinker et al. (2010) in the case of DT, whereas for
the other methods the bias is clearly overestimated. This is partic-
ularly true in the case of NGP. The DT method better accounts for
local variations in number density, reducing the shot noise in the
reconstruction and giving a better sampling of the most extreme en-
vironments. In this exercise, we pushed the methods towards their
limits by considering a very small grid size of 2.5h−1 Mpc. How-
ever, if we increase the grid size to 5− 10h−1 Mpc, the recovered
halo biases come to agreement and we find that the three methods
converge to the same values.

The biasing scheme that enters in the conditional mass func-
tion has also some impact on the recovered halo clustering, in par-
ticular for small grid size density field reconstruction such as the
one considered here. We show in the bottom panel of Fig. 2 the
effect on the recovered halo bias when assuming a linear or power-
law bias model as describe in Section 2.2. In both cases we use the
halo density field reconstructed with the DT method. We find that
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1989). The shape the halo mass function n(m) and bias factor
b(m), which are the basic ingredients entering in the conditional
halo mass function, have to be extrapolated to the masses below
the nominal minimum halo mass of the simulation or to be assumed
from theory. In the following subsections we describe in detail the
two parts of the method.

2.1 Halo density field estimation

The main idea is to use the simulation halo catalogue, which pref-
erentially traces the densest environments, to infer the full range of
overdensity. The first step is to estimate the halo density field traced
by the haloes originally present in the simulation. There are several
ways to estimate the density field, the simplest being to count the
number of objects on a cubical grid, associating each halo to the
closest grid node. Generally the means of assigning objects to grid
nodes and the grid size have an impact on the accuracy of the recov-
ered density field. Optimally, we would like to use cells as small as
possible, so as to probe the smallest-scale density fluctuations, but
also large enough to avoid introducing shot noise. The optimal grid
size will then depend on the number density of haloes in the simu-
lation and, in turn, on the nominal halo mass resolution. One way
of reducing the shot noise in the reconstructed density field is to use
Delaunay tessellation. In that case, instead of using fixed-size cells
to estimate number densities, one uses tetahedra whose size varies
adaptively depending on the local number of objects. The resulting
density field estimates can then be interpolated onto a fine grid for
convenience. This method allows the reduction of the shot noise
contribution, while retaining high-resolution information when it is
available. Other adaptive smoothing methods based on e.g. near-
est neighbours could also be used. We show in the next section the
improvement on the halo density field estimation that this can pro-
duce.

2.2 Low-mass halo population

Once a continuous halo density field is estimated, one can use the
expected number of haloes of mass m in each cell of mass overden-
sity δ, i.e. the conditional halo mass function n(m|δ), to populate
the simulation with haloes of mass below the resolution limit. The
halo density field δh is biased with respect to the mass density field
δ and consequently has to be de-biased prior to being used to pre-
dict the number of expected low-mass haloes.

We follow the peak-background split formalism and write the
conditional halo mass function as,

n(m|δ) = n(m)(1 + �δh(m)|δ�), (1)

where n(m) is the (unconditional) halo mass function and
�δh(m)|δ� is the function describing the biasing of haloes of mass
m. In the case of sufficiently large cells, density fluctuations be-
come linear and we can assume δh = b(m)δ. In this limit Equation
(1) simplifies to,

n(m|δ) = n(m)(1 + b(m)δ) (2)

where b(m) is the large-scale linear halo bias factor. In practice,
n(m) and b(m) have to be specified for mass values below mlim,
the minimum halo mass of the simulation. For this one can either
use analytical forms or extrapolate these functions in the simula-
tion itself. The extrapolation is relatively straightforward because
those functions show only weak and relatively easily predictable
variations with halo mass in the low-mass regime.

Equation (2) is valid for densities estimated on large scales
where non-linear fluctuations are smeared out. However we would
like to have a model that accounts to some extent for bias non-
linearities which are present on small scales. One simple (local)
non-linear biasing model that we can use is the power-law bias
model (e.g. Mann et al. 1998; Narayanan et al. 2000) for which
the halo bias is defined as,

1 + δh ∝ (1 + δ)b(m). (3)

This model has a certain number of advantages: it naturally avoids
negative densities and depends only on one parameter. Furthermore
such a power-law model has empirical support to the extent that it
gives a good match to the relative biasing of different classes of
galaxies (Wild et al. 2005). We will show in Section 3 that it is
accurate enough for the purpose of the present method. While using
the power-law bias model in Equation (1), one obtains a conditional
halo mass function of the form,

n(m|δ) ∝ n(m)(1 + δ)b(m). (4)

Because the halo density field is biased and the mass overdensity
that enters in Equation (4) is unknown a priori, one has to rewrite
the conditional mass function in terms of the halo overdensity δh.
If we assume the same biasing model to de-bias the original halo
density field, then the final conditional halo mass function that we
can use to populate the simulation in low-mass haloes is,

n(m|δh) ∝ n(m)(1 + δh)
b(m)/b0 , (5)

where b0 is the effective bias of the original halo population defined
as,

b0 =

� ∞

mlim

b(m)n(m) dm. (6)

Note that there would be a factor m inside the integral if we had
chosen to weight haloes by mass. But number weighting reduces
both non-linear bias and shot noise from finite numbers of haloes.
In practice the normalisation of Equation (5) is imposed empiri-
cally by requiring �δh� = 0 when volume averaging over all cells
of the simulation. Finally, the number of low-mass haloes in each
cell is randomly drawn by Poisson sampling the n(m|δh). We note
that with this procedure, the low-mass haloes will not exhibit any
clustering on scales below the size of the cells.

It is worth repeating that one could of course have used the
dark matter particles in the simulation and worked directly from
the mass density field δ using Equation (4), but using the halo cat-
alogue provides a much more efficient means of accessing this in-
formation. In particular, it allows the reconstruction method to be
applied to public simulation datasets where the full particle distri-
bution is typically not made available.

3 TESTS ON SIMULATION DATA

We test the reconstruction method on the Millennium simulation
(Springel et al. 2005) which probes a volume of 0.125h−3 Gpc3

with a mass resolution of mp = 8.6 × 108 h−1 M⊙ in
a ΛCDM cosmology with (Ωm, ΩΛ, Ωb, h, n, σ8) =
(0.25, 0.75, 0.045, 0.7, 0.95, 0.9). We will also make use in
the following of the MultiDark Run 1 (MDR1) dark matter N-body
simulation (Prada et al. 2012). MDR1 probes a larger volume of
1h−3 Gpc3 with a mass resolution of mp = 8.721×109 h−1 M⊙
in a ΛCDM cosmology with (Ωm, ΩΛ, Ωb, h, n, σ8) =
(0.27, 0.73, 0.0469, 0.7, 0.95, 0.82). In both simulations, the
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•  Combine VIPERS/BOSS 3D clustering and lensing measurements in 

CFHTLS/STRIPE82 fields and use estimator such as (Zhang 2007): 

 
      in order to measure RSD with higher accuracy and break bias    
      degeneracy and related uncertainties with lensing 
 
•  On the observational side, Reyes et al define EG as 

where ϒgm depends on gg-lensing and ϒgg depends on projected w 

•  We propose to perform a combined fit RSD + Lensing to account for 
the degeneracies between β, ϒgg, galaxy bias and Ωm 
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Mass  aperture  E/B  mode  decomposition	

With  n(z)  sources  and  CFHTLens  
masking  (about  615,000  gals)	
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Conclusion	

•  Done: 

o  1 lensing lightcone of 7x4deg2 has been produced 
o  The overlap between the lensing and spectroscopy fields is done 

•  In Progress: 
o  54 lensing lightcones of 8.5x1.8 deg2 are being computed 
o  54 galaxy mocks with VIPERS properties are being computed 
o  The lensing estimator is done and tested on toy models 
o  The final testing the cross correlation lensing and BigMD halos positions 

•  Todo: 
o  Calculations of the covariance matrices with the mocks 
o  Final coding of the estimators and the fit procedure 


