

# WA105 experiment

Vyacheslav Galymov on behalf of WA105 collaboration

Institut de Physique nucléaire de Lyon

15<sup>th</sup> International Workshop on Next generation Nucleon Decay and Neutrino Detectors Paris, November, 2014



## Outline

- Introduction
- WA105 detectors
- LBNO-Demo technical description
- Conclusions

## Large scale liquid argon TPC

#### Concept of double-phase LAr TPC (Not to scale)



**GLACIER** (**G**iant **L**iquid **A**rgon **C**harge **I**maging **E**xpe**R**iment) concept
A. Rubbia hep-ph/0402110

Large scale LAr TPC for LB neutrino oscillation physics, astrophysics, and nucleon decay search (GUT physics)

- Single cryo-tank based on industrial LNG solution to house O(10) kton of LAr mass
- Double-phase for charge readout with amplification:
  - Long drift distances
  - Low energy detection thresholds

## Goal: large scale DLAr detector

Fully engineered design for ~24kton and ~50kton detectors from LAGUNA/LBNO design study (2011-2014)



- Single tank constructed using LNG technologies
- Affordable solution for underground installation
- 1 − 2 MV voltage on the cathode
- $\rightarrow$  drift field 0.5 1.0 kV/cm
- Hanging field cage structure
- → no contact with the tank ground
- Height adjustable anode deck
- → keep constant LAr level
- Instrumented area 824 m<sup>2</sup> for 24kton and 1845 m<sup>2</sup> for 50kton

## Towards large DLAr detectors

- Purity in non-evacuated tank
- Large hanging field cage structure
- Very high voltage generation
- Large area charge readout
- Accessible cold front-end electronics
- Long term stability of UV scintillation light readout

## WA105

Build and operate a large scale prototype (LBNO-Demo) to demonstrate the feasibility of LAGUNA/LBNO DLAr TPC design for O(10) kton detectors







## The physics case for DLAr demo

- Development and validation of automatic event reconstruction in LAr
- Assessment of PID performance
- Test  $e/\pi^0$  rejection
- Study of energy resolution and scale for calorimetric measurement

$$E_{reco} = \alpha E_{had} + \beta E_{EM}$$

- Resolution constant term:  $\sigma/E = A/\sqrt{E} \oplus B$ ?
- Charged pions and proton cross sections on Ar nuclei (input to modelling of FSI in nuclear environment)

Dedicated data-taking campaign with charged particle beams of well-known momenta and type





#### Measurement of hadronic showers

- LAr TPC provide a fully active homogeneous medium
- High granularity 3x3 mm<sup>2</sup> ← two orders of magnitude better than most granular calorimeters
  - e.g., CALICE AHCAL prototype has 3x3 cm<sup>2</sup>
- Additional handle from dE/dx

Opportunity to provide unprecedented measurements of hadronic shower development to HEP community

#### WA105 collaboration





- LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux
- OMEGA Ecole Polytechnique/CNRS-IN2P3
- UPMC, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE)
- APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/ IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité
- IRFU, CEA Saclay, Gifsur-Yvette
- Université Claude Bernard Lyon 1, IPN Lyon



Institut de Fisica d'Altes Energies (IFAE), Bellaterra (Barcelona)



- University of Glasgow
- University College London



- University of Jyväskylä
- University of Oulu
- Rockplan Ltd



- Horia Hulubei National Institute (IFIN-HH)
- University of Bucharest



- University of Geneva, Section de Physique,
- ETH Zürich



INFN-Sezione di Pisa



CERN



 High Energy Accelerator Research Organization (KEK)





 Faculty of Physics, St.Kliment Ohridski University of Sofia



Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

#### WA105 DLAr detector



Some detector parameters:

Insulated membrane tank

→ inner volume 8.3x8.3x8.1 m<sup>3</sup>

Active area 36 m<sup>2</sup>

Drift length 6 m

Total LAr mass 705 ton (~300 ton active)

Hanging field cage & readout plane

# of signal channels: 7680 in 12 signal FT

# of PMTs: 36

#### Compared to LAGUNA/LBNO 20 kton DLAr





#### WA105 MIND

MIND = Magnetized Iron Neutrino Detector





## 500 ton magnetized iron detector demonstrator installed after LBNO-Demo

- Track secondaries escaping from DLAr
- Complement momentum reconstruction of high energy muons
- Study reconstruction for charge ID of low energy muons (<1 GeV)</li>



#### MIND activities

#### **Detector modules R&D**

- SiPM photosensors
- Plastic scintillators
- Wavelength shifting fiber
- Integrated electronics & DAQ





- Optimization of detector performance & costs
- MIND prototype 50 ton detector ("Baby MIND") for test beam in SPS H8 beamline (0.5 – 9 GeV/c range)

## WA105 at CERN





13



# The EHN1 extension - 28 October 2014 LBNO-Demo

#### Particle containment in LBNO-Demo



## TPC drift cage and HV



Off-shelf 300kV PS from Heinzinger GmbH  $\rightarrow$  can operate with 0.5 kV/cm drift field over 6m

R&D with industry to find a solution to get to 1kV/cm (600 kV PS)

## Charge readout deck



CRP (Charge Readout Plane) structure

2 mm

Collection field 5kV/cm

1 cm

Ar

Extraction field 2kV/cm

Extraction grid

2D Anode

1mm thick LEM (Large Electron Multiplier) 25-35 kV/cm

Multilayer PCB anode. 3.125 mm pitch



LEM: 500  $\mu$ m holes, 800  $\mu$ m pitch, 1mm thick FR4



Extraction grid: 100  $\mu$ m stainless still wires 3mm pitch in x and y



## Large area LEMs







DLAr signal readout 12 signal feed-through chimneys each collecting data from two 3x1 m<sup>2</sup> group of anodes (640 ch / chimney) μTCA crates w/ digital electronics Signal cables on blades to extract FE CRP to FE card <50cm LAr heat exchanger 3m x 1m N<sub>2</sub> flushing ring ASIC (CMOS) preamplifier working 19 in cold at  $\sim -160^{\circ}$ 

#### Front-end and back-end electronics

## 16 channel ASIC with CMOS-based preamplifiers

- Low noise due to ambient temperature of 110 K and proximity to CRP (short cables)
- Power consumption 18mW/ch
- Large dynamic range up to 40 mip using double slope structure of the gain



- DAQ system based on micro-TCA standards
- Readout frequency 2.5MHz
- Total time window of 4000 usec ← covers completely 6 m of drift



Scalability to large detectors (300k ch for 20 kton) at low cost

## Timescale

| CERN WA105 6x6x6 TPC DEMO                | 2014 |    | 2015 |    |    |    | 2016 |    |    | 2017 |    |    | 2018 |    |    |    | 2019 |    |    |    |    |    |    |    |
|------------------------------------------|------|----|------|----|----|----|------|----|----|------|----|----|------|----|----|----|------|----|----|----|----|----|----|----|
|                                          | Q1   | Q2 | Q3   | Q4 | Q1 | Q2 | Q3   | Q4 | Q1 | Q2   | Q3 | Q4 | Q1   | Q2 | Q3 | Q4 | Q1   | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 |
| MANAGEMENT AND INTERFACES                |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| -EHN1-X                                  |      |    | X    | X  | X  | X  | X    | X  | X  | X    |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
|                                          |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| TANK REALISATION                         |      |    |      |    |    |    |      |    | ?  |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| -TANK CONSTRUCTION                       |      |    |      |    |    |    |      |    | •  | _(   | X  | Χ  | Χ    |    |    |    |      |    |    |    |    |    |    |    |
|                                          |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| DETECTOR INSTRUMENTATION                 |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| -DETECTOR INSTALLATION                   |      |    |      |    |    |    |      |    |    |      |    |    | Χ    | Χ  | Χ  | Χ  |      |    |    |    |    |    |    |    |
|                                          |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| CRYOGENICS AND COMMISSIONING             |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| -liquid infrastructure installation      |      |    |      |    |    |    |      |    |    |      | Χ  | Χ  | Χ    |    |    |    |      |    |    |    |    |    |    |    |
| -Lar commissioning (filling and cooling) |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      | Χ  |    |    |    |    |    |    |
|                                          |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |
| START OF EXPERIMENT                      |      |    |      |    |    |    |      |    |    |      |    |    |      |    |    |    |      |    |    |    |    |    |    |    |

Construction of EHN1 extension on the critical path Optimization of construction schedule Currently aim to start data taking by mid 2018

## Summary

# WA105 will construct a ~700 ton DLAr detector (LBNO-Demo) at CERN

- Demonstrate double-phase technology for large LAr detectors
- Validate the technical designs developed by LAGUNA/LBNO
- Study detector performance with dedicated charged particle beam

Successful operation of LBNO-Demo opens the door towards large and affordable underground DLAr observatory for LBNO/LBNF

# Thank you

## Back-up material

## LBNO-DEMO detector fact sheet

| Liquid argon density                             | $T/m^3$        | 1.38                        |
|--------------------------------------------------|----------------|-----------------------------|
| Liquid argon volume height                       | m              | 7.6                         |
| Active liquid argon height                       | m              | 5.99                        |
| Hydrostatic pressure at the bottom               | bar            | 1.03                        |
| Inner vessel size (WxLxH)                        | $m^3$          | $8.3 \times 8.3 \times 8.1$ |
| Inner vessel base surface                        | $m^2$          | 67.6                        |
| Total liquid argon volume                        | $\mathrm{m}^3$ | 509.6                       |
| Total liquid argon mass                          | t              | 705                         |
| Active LAr area                                  | $m^2$          | 36                          |
| Charge readout module (0.5 x0.5 m <sup>2</sup> ) |                | 36                          |
| N of signal feedthrough                          |                | 12                          |
| N of readout channels                            |                | 7680                        |
| N of PMT                                         |                | 36                          |

#### GLACIER 20kt, 50kt: 4x4 m<sup>2</sup> modules

#### Each Charge Readout Plane is an independent detector





different geometries but all with the same functionality and identical construction sequence.



- \*Each CRP has its own signal and HV feed throughs
- \*Adjustable to LAr level
- \*The LBNO demonstrator will have an enlarged 4x4 m<sup>2</sup> => 6x6m<sup>2</sup>

## CRP alignment requirements



Tolerances are calculated to keep gain stability <5%

|              | [mm]          | electric field $[kV/cm]$ | tolerance [mm] |
|--------------|---------------|--------------------------|----------------|
| anode-LEM    | 2             | 5                        | 0.1            |
| LEM          | 1             | 34                       | 0.01           |
| LEM-grid     | 10            | 2                        | 1              |
| liquid level | 5 (from grid) | -                        | 1              |

## Charge deposition



