

The NOvA Experiment

Adam Aurisano University of Cincinnati for the NOvA Collaboration

NNN2014 November 5, 2014 APC Laboratory, Paris, France

NuMI Off-Axis v_e Appearance Experiment

NOvA is a long-baseline neutrino oscillation experiment located 14 mrad off-axis from the NuMI beam designed to measure:

$$P(\nu_{\mu} \to \nu_{e}) \text{ and } P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$$

• θ₁₃

$$\theta_{22}$$
 octant

Mass hierarchy
CP violation

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ and } P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$

- Improved precision on $|\Delta m^2_{_{32}}|$ and $\theta_{_{23}}$

Others

- Cross-sections
 S
- Steriles

SupernovaeExotics

Upgraded NuMinobeam medium energy tune, higher power

Adam Aurisano

NOvA Design

Far detector:

- 14 kton, low Z tracking calorimeter
- Liquid scintillator filled PVC cells
- ~344,000 channels

Near detector:

- 0.3 kton
- Functionally equivalent to FD
- 4x faster electronics to handle high rate environment
- ~20,000 channels

Readout Cell

- 16 m x 4 cm x 6 cm PVC cells with 15% TiO₂ for high reflectivity
- Filled with liquid scintillator
- Light transported out by a wavelength shifting fiber loop
- 32 cells in a module read out by a single avalanche photodiode (APD)
 - APD's have high quantum efficiency (~85%) with good uniformity over the WLS fiber spectrum
 - Cooled to -15 °C to reduce dark current to ~ 2 pe equivalents
 - MIPs produce >30 pe at far end giving better than 10:1 signal to noise ratio

32 fiber pairs

-	 ••	

1011111111

NOvA Event Topologies

Excellent spatial granularity

~0.15 X_0 per plane

Electron showers are ~8 cells wide and ~30 cells long

NC can look very similar to electron showers, but energy is lower → narrow band beam helps

NC with π^0 production was irreducible in MINOS. In NOvA, gap and two showers can help with discrimination.

Adam Aurisano

ν_{e} Appearance

Measure $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ to give a ellipse in this plane

Placement in the plane gives information about θ_{23} , mass hierarchy, and δ_{CP} .

At the shown example point, we could measure the hierarchy at the 95% CL

Mass Hierarchy/CP Violation Sensitivities

5 November 2014

Adam Aurisano

Octant Sensitivity

For sin²2 θ_{23} = 0.95, we can measure the octant to 95% CL or better for all values of δ_{CP}

Upper Octant

ν_{μ} Disappearance

For baseline exposure, NOvA will improve on the current best value of θ_{23} and possibly exclude maximal mixing

Excellent resolution of the first oscillation minimum

- 4.5% resolution for QE events
- 6% for non-QE events

NuMI Beam

- Using new NOvA target and medium energy tune
- Throughout 2014, the NuMI beam has operated at ~280 kW
- Proton Improvement Plan is ongoing
 - $2015 \rightarrow 410 \text{ kW}$
 - $2016 \rightarrow 700 \text{ kW}$ (design power)
- Data already collected:
 - FD (14 kton equiv): 0.7x10²⁰ POT
 - ND: 0.2x10²⁰ POT
- By the 2015 shutdown:
 - FD: ~3.0x10²⁰ POT
 - ND: ~2.5x10²⁰ POT

Detectors Complete!

As of September 4, 2014, both detectors are fully commissioned.

5 November 2014

Adam Aurisano

Detectors Complete!

As of September 4, 2014, both detectors are fully commissioned.

5 November 2014

Adam Aurisano

Far Detector

- During commissioning, we assessed if the far detector was seeing neutrinos using two techniques
 - Hand-scanning
 - Automated analysis with similar cuts to final analysis
- Both performed blind to the event time
- Golden events are ones deemed highly likely to be neutrinos
- Clearly found the timing peak

These golden events look like neutrinos in all ways except their event time – probably cosmic ray induced neutrons

FD Neutrino Candidate

- Pulsed beam: spill window is 10 μs
- Every beam trigger carries 245 µs of minimum bias data on either side of spill
- Clustering in space and time + pulsed beam helps remove most cosmic rays

Cosmic Air Shower

High Energy Trigger

5 November 2014

Near Detector

- Timing 24,333 NuMI spills collected (~13.38 s of live time)
- No reconstruction/cuts → raw hit times
- Fast timing gives good enough timing resolution to see the structure of the beam

Near Detector: Neutrino Candidate

Noise easily removed using spatial and temporal clustering

$\nu_{\rm e}$ Selection

- Two complementary methods of identifying electron showers
 - EID → A neural net based on shower development
 - LEM → A matching approach based on comparing a library of simulated electron showers to reconstructed showers

Cosmic Rejection

- FD is on the surface $\rightarrow \sim 20$ million cosmic rays/year
- Electron particle ID already removes many \bullet cosmic rays
 - Cosmic rays usually do not look electron-like
- Use three extra cosmic rejection cuts based on simple idea that events of interest come from the beam while cosmic rays come from the sky
 - $P_{t}/P \rightarrow$ require shower to point in the direction of the beam
 - Max $Y \rightarrow$ remove showers with hits near the top of the detector
 - Vertex gap \rightarrow remove showers with start points far from the reconstructed vertex
- Achieves 40 million to 1 rejection!

After all cuts (1 year): $14 v_{e}$, 6 beam bkg, 0.5 cosmic rays Adam Aurisano

Summary

- Both the near and far detectors are now operational
- Beam is operating at ~280 kW and 25x10¹² POT/spill
- First analysis results expected in early 2015
- Stay tuned!

Mass Hierarchy/CP Violation Sensitivities + T2K

5 November 2014

Adam Aurisano