Some thoughts on light readout in LAr

A. Tonazzo for APC / LAPP / Omega

Preliminary questions on light RO in LAr

Primary scintillation is used mainly for trigger. "physics" questions for ParisROC optimisation:

timing of signals

amplitude range

is charge measurement necessary?

Timing of signals

Primary scintillation in LAr:

- fast component (singlet) : τ_1 =7ns (~23% of light)
- slow component (triplet): $\tau_2 = 1.6 \mu s$ (~77% of light)
- => overall signal duration ~5μs

Amplitude of signals

1 GeV v's give $N_v^{-1.6x10^7}$ [ArXiv:1408.0848] (not far from estimate with MIPs)

What is our light collection efficiency?

- In ArDM, $\varepsilon = 4x10^{-2}$
- Extrapolation to WA105 :
 - optical coverage 68% -> 8% and only bottom -> 1/17
 - non-reflective walls: from ArDM geometry -> 1/3 ?

$$=> \epsilon \sim 8x10^{-4}$$
 (need to check, with simulations for example)

So from 1 GeV v's, we should get ~ 10000 PE

- divide by 36 PMTs => ~ 300 PEs / PMT / GeV v
- neutrino energies up to 8 GeV => up to ~2400 PEs/PMT
- MeV physics will be at <1 PE/PMT

=> Dynamic range : **1-3000 PEs**

Questions on light RO in LAr

Primary scintillation is used mainly for trigger. "physics" questions:

timing of signals

Fast component: τ_1 =7ns (~23%) Slow component: τ_2 =1.6 μ s (~77%)

=> overall ~5μs

• amplitude range

from 1 PE (MeV physics) to ~3000 PE per PMT (GeV physics)

/

is charge measurement necessary?

Not strictly for trigger, but may be useful for calorimetry! cfr M.Sorel, arxiv.org/pdf/1405.0848.pdf

Neutrino energy measurement in LAr

- Ev from lepton momentum and direction good approximation only for CC-QE interactions
- Ev from calorimetric energy reconstructions suffers from fluctuations due to:
 - 1. nuclear effects in v interactions
 - 2. leakage out of the active detector volume
 - 3. energy carried away be secondary v's
 - 4. quenching of ionization and excitation
 - 5. electron-ion recombination
 - 6. e- attachment to impurities
 - 7. electronic noise

ArXiv:1408.0848 => measurement of primary scintillation light can correct for 3. and 5.

Electron-ion recombination

Electron-ion recombination

ArXiv:1408.0848

Missing energy due to secondary v's

ArXiv:1408.0848

• Missing energy due to secondary v's from μ decays is a good estimate of total energy carried away by secondary v's.

• If a detector is capable to tag Michel electrons from μ decay at rest and to measure their energy, the total Emiss can be

inferred

Complication: μ lifetime
~ slow scintillation τ

 However, fraction of slow scintillation light decrease with energy and with impurities, so Michel-e tagging may be done with high efficiency (cfr ICARUS)

Improvement in calorimetric E,

ArXiv:1408.0848

Charge RO only

- + ionization corr. from light RO
- + Emiss from secondary v's
- + both corrections

Conclusion: primary scintillation measurement can improve v energy measurement (complementary to PANDORA offline approach) ⇒ charge measurement in light RO is useful

Improvement in calorimetric E_v

Detector requirements for light RO to be useful:

- average photon yield: N_ν~1.6x10⁷ from 1 GeV v's
- need statistical fluctuations to be <~1% => light collection efficiency $\epsilon > 6 \times 10^{-4}$ ArXiv:1408.0848

Our extrapolation to WA105 was $\epsilon \sim 8x10^{-4}$: ok! (need to check all this....)

Conclusion: primary scintillation measurement can improve v energy measurement (complementary to PANDORA offline approach)

- ⇒ charge measurement in light RO is useful
- ⇒ tests in WA105 will be crucial

<u>Summary</u>

We have tried to ask some preliminary "physics" questions to define light RO specifications

- Signal timing: risetime ~ns, total ~5μs
- Dynamic range: 1 ~3000 PE
- Charge measurement in light RO can be useful for calorimetric measurement of Ev; WA105 has the appropriate requirements and can be an ideal test bench for the principle

Questions under discussion: impact of high rate in WA105 (cosmic μ ~7 kHz)

- overall readout time
- use of scintillation light for triggering (likely impossible in WA105, it will be just for test)
- ringing/blinding of PMTs?