PERSPECTIVES DU GROUP AMA ASYMÉTRIE MATIÈRE/ANTIMATIÈRE

Claudio Giganti

Biennale du LPNHE

PERSPECTIVES DU GROUP AMA ASYMÉTRIE MATIÈRE/ANTIMATIÈRE

Claudio Giganti

Biennale du LPNHE

PERSPECTIVES DU GROUP

ASYMÉTRIE MATIÈRE/ANTIMATIÈRE

Biennale du LPNHE

Claudio Giganti

OUTLINE

- Flavor physics:
 - LHCB
 - Physics run2 (2015-2018)
 - Upgrades (2018 \rightarrow)
 - Phenomenology
- Muons: COMET and g-2/EDM
- Neutrinos
 - T2K (up to ~2020)
 - WAI05 LAGUNA
- Other ideas for the future

ÉCHELLE D'ÉNERGIE DE NOUVELLE PHYSIQUE

La présence d'une particule de nouvelle physique dans la boucle pourrait avoir une influence sur les observables

$$\mathcal{L}_{eff} = \mathcal{L}_{MS} + \frac{C_{NP}}{\Lambda_{NP}}$$

Echelle de nouvelle physique

Necessite plus de statistiques pour avoir access a la NP → LHCb run2, LHCb upgrade

Perspective du run2 pour $B^0 - K^* \mu^+ \mu^-$

I/3 of stat of run I → ~0.2 error on the third bin

Error in third bin of P_5 ':

With 3fb⁻¹ (all stat. of run1) => 0.11
→ ~6 σ deviation if central value stay the same
With run1+ run2 we get 8fb⁻¹ => 0.07 +possible reduction of theoretical errors +possible deviations in other bins and other observables

Perspective du run2 pour $B^0 -> K^* \mu^+ \mu^-$

• Photon polarization: Standard Model: photon almost fully left-handed in $b \rightarrow s\gamma$

Error in first bin (most sensitive to photon polarization):

- With 3 fb⁻¹ \rightarrow 0.04 (approaching theoretical error...)
- After run2 (8 fb⁻¹) \rightarrow 0.02

[GeV²/c⁴]

- Plan to work with LAL for the electron channel $B^0 \rightarrow K^*e^+e^-$
- Experimentally more challenging: trigger, bremsstrahlung, higher background
 → less events
- But higher sensitivity (can reach lower q² where the photon diagram is dominant)
 - → Expected same sensitivity as muon channel
 - → Combining with electron channel errors reduced roughly of I/sqrt(2)

$B^{0}_{d,s} \rightarrow K_{S}hh'$: Présent et futur

- Nous avons commencé une analyse en amplitude (thèse de L. Henry)
- Cette analyse sera effectuée par étapes de complexité croissante :
- <u>Dans un premier temps</u> mesure de la structure résonante de $B_s \rightarrow K_s hh' (3fb^{-1})$
- Ensuite (avant upgrade) analyse dépendant du temps dans les modes B_s , sans « tagging » de saveur, pour mesurer β_s en exploitant la différence de largeur $\Delta\Gamma_s$
- <u>Avec des données de l'upgrade</u> des tests du modèle standard avec une analyse complète, dépendant du temps et de « tagging », pourraient être tentés
- Etude en cours basée sur SU(3) d'une méthode d'extraction de l'angle γ combinant les modes B → Kππ et B → KKK

Phys. Lett. B 728 (2014) 206-209)

LHCb: Charm physics plans

ΔA_{CP} : seach for direct CPV in D⁰ \rightarrow K⁺ K⁻, $\pi^+ \pi^-$

- ✓ D*+-tagged analysis [other is muon-tagged]
- ✓ Preliminary result on I fb⁻¹
- ✓ Paper with 3 fb⁻¹ planned

- ✓ Knowledge of strong phases allows us to extract (x,y) directly, unlike 2-body modes which give y_{CP} or (x² + y²)
- ✓ Novel technique, no model uncertainty.
- ✓ Paper on 1 fb⁻¹ in 2014.

Search for Ξ_{cc} baryon

- ✓ Search with one decay mode on 0.65 fb published end of 2013 (discussed by Mat)
- Expanded search with 3 fb⁻¹, many modes, and better selection in progress. Much better sensitivity, real chance of discovery

Désintégrations du méson B_c sans particule charmée

- Terrain de jeu intéressant pour la recherche de nouvelle physique!
 - Processus similaire à B → D^(*)TV (en tension avec le MS, cf. Babar).
- Le groupe du LPNHE a été <u>pionnier</u> dans la recherche de ces modes, publié1/fb 2011 (état final K_SK⁺) Phys.Lett. B726 (2013) 646-655.

 $\frac{f_c}{f_u} \cdot \frac{\mathcal{B}(B_c^+ \to K_{\rm s}^0 K^+)}{\mathcal{B}(B^+ \to K_{\rm s}^0 \pi^+)} < 5.8 \times 10^{-2} \text{ at } 90\% \text{ confidence level}$

- Grands échantillons de données nécessaires.
- Expected <100 $B_c \rightarrow K_S K^+$ decays for 10/fb at LHCb
 - Moyen term
 - Avec les données de Run I + Run2 : Recherche du signal significatif de canaux comme K*⁰K ⁺ and K_SK⁺.

Long term

 Apres l'upgrade: Analyse permettant de sonder la nature angulaire du boson intermédiaire. Analyse angulaire d'états finals V-V (e.g. B_c→K₁(1270)K*(892))

LHCb upgrade: pourquoi?

- Des déviations par rapport au prédictions du Modèle Standard sont toujours attendues, mais elles devraient être petite O(1 à 10%).
- L'observation d'un boson de Higgs à 125 GeV ouvre la porte à des processus au-delà du Modèle Standard à des échelles de masse » TeV.
- Dans ce contexte, ou nous ne savons pas ou aller, la seule stratégie expérimentale est de mesurer le plus précisément possible les observables ayant peu d'incertitudes théoriques.
- C'est la motivation pour l'upgrade de LHCb.

LHCb measurements in upgrade

Run I \rightarrow 3 fb⁻¹ Run 2 \rightarrow 5 fb⁻¹ Upgrade \rightarrow 50 fb⁻¹

LITOD Opgrade (auto).

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B_s^0 \rightarrow J/\psi \phi) \text{ (rad)}$	0.05	0.025	0.009	~ 0.003
	$\phi_s(B^0_s \to J/\psi f_0(980))$ (rad)	0.09	0.05	0.016	~ 0.01
	$A_{ m sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_z^{\text{eff}}(B^0_z \to \phi \phi) \text{ (rad)}$	0.18	0.12	0.026	0.02
penguin	$\phi_s^{\text{eff}}(B^0_s o K^{*0} ar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.029	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S) \text{ (rad)}$	0.30	0.20	0.04	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \rightarrow \phi \gamma)$	0.20	0.13	0.030	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi\gamma)/ au_{B^0_s}$	5%	3.2%	0.8%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{ m FB}(B^0 o K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV}^2/c^4)$	0.14	0.07	0.024	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 ightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	220%	110%	40%	~ 5%
Unitarity	$\gamma(B o D^{(*)}K^{(*)})$	7°	4°	1.1°	negligible
triangle	$\gamma(B^0_s ightarrow D^{\mp}_s K^{\pm})$	17°	11°	2.4°	negligible
angles	$eta(B^0 o J/\psiK^0_S)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \rightarrow K^+ K^-) (10^{-4})$	3.4	2.2	0.5	-
CP violation	$\Delta A_{CP}~(10^{-3})$	0.8	0.5	0.12	-

Upgrade de LHCb

- Running conditions implies higher occupancies and radiation doses
- Replace/overhaul several subdetectors: VeloPixel, Trackers (UT, SciFi), RICH
- Replace readout electronics \rightarrow 40 MHz instead of I MHz
- Collect 50 fb⁻¹ over 10 years (from 2019, after LS2)

	2012	Upgrade	
bunch spacing	50 ns	25 ns	
\sqrt{s}	8 TeV	14 TeV	
L	4x10 ³²	2x10 ³³	
Pile-up	1.7	2.7	

LPNHE

- Nous avons rejoint la collaboration SciFi pendant l'eté 2013.
- Nous avons contribué au TDR SciFi (submitted at LHCC in March) dans les sections électronique et software de simulation et a deux notes publiques: sur la geometrie (LHCB-PUB-2014-005) et sur l'algorythme de reconstruction « standalone » (LHCB-PUB-2014-002).
- Notre projet d'electronique est sous réserve d'approbation du CS du LPNHE en Juillet.

SciFi: Scintillating Fiber Tracker

- Tracking system has to be changed to resist to high expected radiation
- ✓ 3 station, each station with four layers: x, u, v, x
- 250µm diameter scintillating fibers, 2.5m long, arranged in multiple layers
- Whole acceptance covered
- mirror at the center (beam pipe height) to collect reflected light
- Dead material in the acceptance minimized through readout at borders
- Multi-channel Silicon photo-multipliers (SiPM 128 channels in a 32mm array),
 40MHz front-end electronics

Activités software

- Implémentation de la géométrie du détecteur pour la simulation et la reconstruction.
- Toujours en évolution dans cette phase de projet.
- Maintenance du package FTDet prise en charge par le LPNHE.
- « Stand alone tracking »:
- Reconstruit les traces seulement avec les hits dans le SciFi (no velo, no UT)
- Nécessaire, par exemple, pour la reconstruction des K_S
- Implémentation et études de ses performances
- Adaptation pour calcul parallèle et calcul sur GPU dans le cadre du trigger (demande ANR LPaSo: LHC Parallel Software)

Tracking requirements:

Low ghost rate [~10%] Fast pattern recognition

at 5 GeV/c]

High momentum resolution $[\sigma(\mathbf{p})/\mathbf{p} = 4 \times 10^{-3}$

High track efficiency [96% for long tracks]

High IP resolution [20 μ m at high \mathbf{p}_{T}]

Projet d'électronique au LPNHE

- Prise en charge de 50% des cartes « backend » TELL40 pour SciFi
- Déploiement du firmware
- Développement d'un firmware spécifique si nécessaire
- Olivier Le Dortz responsable de l'acquisition SciFi pour LHCb
- Sous réserve d'approbation du conseil scientifique du LPNHE de Juillet
 → si positif il faudra renforcer le support des service techniques
 (besoins en électronique et informatique)

Phenomenologie des saveurs: perspectives Desintegrations hadroniques à trois corps des mésons lourds B et D

Motivations

→ données haute statistique (Belle & BABAR), nouvelles données (LHCb) et données à venir (Belle II)

→ Test MS & QCD: Matrice CKM, Triangle Unitaritè, CPV (phase faibles et fortes), Melange

→ Interactions fortes méson-méson: constantes de désintégration, facteurs de forme scalaires et vectoriels - Résonances

Perspectives à court terme

 \rightarrow Amplitude D0 \rightarrow K⁰_sK⁺K⁻

factorisation quasi deux-corps en QCD données diagramme de Dalitz (BABAR --PRL 105, 081803 (2010)

	à plus long term	
Processus	Publication LHCb	Avantages
$D^0 \rightarrow K^0_S K^{\pm} \pi^{\mp}$	arXiv: 1402.2982 [hep-ex]	Notre travail : publié $D^0 o K^0_S \pi^+ \pi^-$
-		en cours $D^0 \to K^0_S K^+ K^-$
$D^+ \rightarrow \pi^- \pi^+ \pi^+$	PL B728, 585 (2014)	Notre travail publié PRD 79, 034020 (2009)
$B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$	PRL 112, 011801 (2014)	Notre travail publié APPB 42, 2013 (2011)
$B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$		Travail à réaliser
$B^0 \rightarrow K_S^0 \pi^+ \pi^-$	JHEP 10, 143 (2013)	Notre travail publié PRD 79, 094005 (2009)
$B^0 \rightarrow K_S^{0} K^{\pm} \pi^{\mp}$		Travail à réaliser
$\bar{B}_s^0 \rightarrow J/\psi \pi^+ \pi^-$	arXiv: 1402.6248 [hep-ex]	Notre travail publié PRD 82, 076006 (2010) :
-	17	$B^0_s \rightarrow J/\psi f_0(980) \& B^0_s \rightarrow J/\psi \phi$

PHYSIQUE AU-DELÀ DU MODÈLE STANDARD AVEC DES MUONS G-2/EDM ET COMET À JPARC

• Violation du nombre leptonique:

- Conservé dans le MS, violé dans la plupart des modèles de NP
- $\mu \rightarrow e$: COMET, MEG, Mu2e

- Moment magnétique anomal du muon → g-2/EDM:
 - Déviation du MS supérieure à 3 sigma toujours inexpliquée (E821, Brookhaven) :

$$a_{\mu} = \frac{(g-2)_{\mu}}{2}$$
 $a_{\mu}^{exp} - a_{\mu}^{SM} = (39.4 \pm 8.5) \times 10^{-10}$

G-2/EDM

- Mesure de $a_{\mu} \rightarrow$ currently there is a ~3.3 σ tension between theory and experiments
- Theory and experiments errors have similar size → new experiments are needed + need to reduce the theoretical error
- g-2/EDM: experiment approved at J-PARC to measure a_{μ} with an increased precision

g-2/EDM

COMET

- Participation du groupe Muon du LPNHE
- approuvée par la Collaboration g-2/ EDM en 2011
- Simulation et « tracking »
- Caractérisation du détecteur.

Reconstruction d'un positron

Participation du Groupe Muon du LPNHE approuvée par la Collaboration COMET en décembre 2012

- Simulation et « tracking »
- Caractérisation d'une cible active d'arrêt de muons en Si et de mesure de faisceau.

En cours avec le soutien de l'IN2P3 à travers les accords FJPPL (2014 : fin mai à Bordeaux).

- COMET : Simulations pour le moniteur d'extinction de faisceau. Muon stopping active target (Silicon Pixel Layers Active Stopping Hodoscope) : simulations et test des pixels d'ATLAS à JPARC. Participation à la mise en place du Framework ICEDUST(Integrated Comet Experiment Data User Software Toolkit) avec les collègues d'Imperial College London.

- g-2/EDM : Design des structures de support et alignement. Développement des outils de « tracking » en phase avec ICEDUST/GENFIT. Cartes de champ dépendantes du temps dans GEANT4. Simulations avec utilisation de la grille au CC-IN2P3 :VO France Asia avec iRODS.

- théoriciens français intéressés par g-2 et cLFV (BSM, Cosmologie, GdR Terascale)

NEUTRINO PHYSICS

Neutrino physics: the knowns and the unknowns

 \checkmark Neutrino physics is the only field in particle physics in which we are still missing some fundamental parameters

✓ The main goal is not to look for new physics but to measure some fundamental parameters (mass, hierarchy, CPV, Majorana or Dirac)

✓ In the last years one of these parameters (θ_{13}) was measured

✓ Daya Bay, RENO → Observed (>5 σ) ν_e disappearance from reactor

 \checkmark T2K \rightarrow Observed (>5 σ) ν_{e} appearance from accelerator ν_{μ} beam

✓ All the mixing angles in the PMNS matrix are large and different from 0

24

- ✓ Next generation of ong baseline neutrino oscillation experiments with clearly defined physics goals:
 - ✓ Measurement of CP violation $\beta^{0.5}_{PD}$ CP ✓ Determination [€] of the mass hierarchy $(v_3 > v_2 > v_1 \text{ or } v_2 > v_1 > v_3)$

T2K perspectives: systematics reduction

✓ NA61 → analysis of T2K replica target data
 ✓ Already published with 2007 pilot run

NA61 can also take data for future accelerator based neutrino experiments (LBNE and LBNO)

- ✓ Consistent with thin target
- \checkmark Improve the coverage of the phase space
- ✓ Goal: 5% on absolute neutrino fluxes, 3% on far-to-near ratio
- ✓ ND280 → improve angular coverage of V_{μ} analyses, measure anti-V
 - \checkmark Many ν_{μ} and ν_{e} cross section measurements to be done

T2K perspectives

- \checkmark Ist observation of V appearance (V_e app.)
- ✓ Best measurement of θ_{23} (ν_{μ} disapp.)
- Errors on the oscillation parameters are dominated by statistical uncertainties

ANR-Proposal: PMNS-fitter J width (SPP, LPNHE, APC, LAL, CSNSM) 0.12 dications of the Mass Hierarchy

iformation on δ_{CP}

<10% of total expected stat!

Next generation accelerator experiments

 \checkmark By 2020 there might be indications for δ_{CP} or MH but at least one new, dedicated experiment is needed to measure these parameters \rightarrow also best detector in the world to study v from SN and proton decay

Japan \rightarrow Hyper-Kamiokande

Water Cherenkov technology

25 x Super-Kamiokande

Short baseline (300 km), existing J-PARC beam

 δ_{CP} from V/antiV asymmetry

MH from atmospheric V

$US \rightarrow LBNE$

Liquid Argon technology

35 kton underground detector New beam from FNAL Medium-long baseline (1300 km)

 δ_{CP} mainly from V/antiV asymmetry

MH from matter effects

Europe \rightarrow LBNO Liquid Argon technology Phased approach 20 + 50 kton Underground detector New beam from CERN Very-long baseline (2300 km) MH from matter effects on very long baseline

ROCKPL

The Liquid Argon option

LAGUNA/LBNO

- ✓ European funded design study to assess the feasibility of research infrastructure → End Summer 2014
- ✓ 7 sites, 3 technologies (WC, LAr, LSc)
- ✓ First priority: Pyhasalmi mine in Finland
- ✓ GLACIER: Double Phase Liquid Argon technology
 - ✓ Incremental approach: 20 kTon + 50 kTon
 - Precise design and costing done during the LAGUNA Design Study
- ✓ Expression of interested to SPSC in 2013
 - ✓ Well received by SPSC
- Triggered a R&D program to demonstrate the feasibility of a Double Phase 20 kTon LAr detector
 - ✓ WAI05 @ CERN
 - ✓ French groups: APC, IPNL, LAPP, LPNHE, SPP

anode & charge readour

LAGUNA/LBNO prototype:WA105

- ✓ 6x6x6 m³ TPC LAr Double Phase
- ✓ Extension of the NA @ CERN
- ✓ TDR submitted to SPSC in April 2014
- ✓ Full scale demonstrator of all the technologies needed for the construction of a 20 kTon detector
 - ✓ LNG tank, Purification system
 - ✓ Proof long drift, HV system of 300-600 k^N
 - ✓ Double phase readout, electronics
- Assess the performances in shower reconstruction
 - ✓ Exposed to a charged particle beam
 - ✓ Hadronic and EM calorimetry, PID performances
 - ✓ Software development, LAr reconstruction

The successful operation of a large scalable demonstrator will put European group in a strong position for the participation to a world-wide joint program

WA105

- ✓ Approved by CERN Research Board
- ✓ Participation from CERN, France, KEK, Spanish, Swiss groups already approved
 - ✓ Presentation at IN2P3 Scientifi
- ✓ Participation of Finnish, Italian, UK ar discussion

MoU with CERN to be submitted by the end of the year

Total cost: 7.9 MCHF CERN support: 3.7 MCHF

Possible timescale: Occupancy EHN1: September 2015 Vessel constructed: March 2016 Inner detector constructed: Jan. 2017 Start commissioning: March 2017 Test-beam data: Spring 2017

7680 readout channels, ICARUS T600 for a similar fiducial mass had 27000 channels

LPNHE involvements in WA105

- ✓ GLACIER → the drift of electrons over long distances → high electric field
 - ✓ GLACIER: 20 meters drift
 - ✓ ~0.5-1 kV/cm is optimal \rightarrow 1-2 MV PS
 - ✓ WA105: demonstrate that electrons can be drifted over 6 m using 300-600 kV PS
- ✓ Build a ~8m long (3m to reach LAr) feed through to transport HV from PS to cathode
- ✓ Existing feedtrough → ~1.5 m long, tested up to 100 kV
- ✓ We visited ETHZ installation @ CERN with Daniel Vincent and Didier Laporte in March and we agreed to
 - ✓ Collaborate to build a new one for an intermediate prototype (1x1x3) to be operated next year
 - ✓ Build final feedtrough for the 6x6x6

Other possible involvements are to collaborate with IPNL to develop the DAQ (with Diego Terront) + Software and reconstruction developments

World-wide program: LBNx option (US)

34

J. Strait (LBNE project manager) presentation at the last LBNO meeting

- ✓ LBNO in Europe has many advantages w.r.t. LBNE from the physics point of view
- ✓ But need to convince Finland and CERN.
- ✓ LBNE in US has been already funded by the DOE with ~850 M\$
- This is just enough to build beamline and underground infrastructure + maybe a small 5 kTon detector
- ✓ Need help from international partners to reach 35 kTon detector → minimum acceptable for physics @ LBNE
- ✓ If WA105 prove that LAr Double Phase works → install 20 kTon detector in the US

IDEAS FOR THE FUTURE

Neutrinos: Hyper-Kamiokande

- ✓ I Mton water Cherenkov detector (500 ton FV) → 25 times SK
- ✓ Strong support in Japan (selected in Japanese Master Plan of Large Research Projects)
- ✓ Best sensitivity to CP-violation
- \checkmark Short baseline \rightarrow not good for MH
- ✓ At LPNHE we are currently not involved in the project → not enough manpower → decided to contribute to European efforts
- ✓ But we are in a good position to join HK if it will move forward (and LAGUNA won't...)
- ✓ Involved in ND280, NA61 that will both be needed for HK
- ✓ We can imagine a direct involvement in HK as well in the next years → in T2K we are not part of SK but that will be different for HK

0.6 0.8 1 1.2 Reconstructed Energy E^{rec} (GeV)

Neutrinos: NuSTORM

- ✓ Proposal submitted to FNAL PAC and CERN
- \checkmark Produce neutrinos (ν_{μ} and $\nu_{e})$ from μ decays
- ✓ Observe them at ~ 1 km distances with Near and a Far Detector
 - ✓ Search for sterile neutrinos
 - ✓ Measure ν_{μ} and ν_{e} x-sections → the main syst. for experiments looking for δ_{CP}
 - ✓ Profit of well known fluxes and large numbers of V_e (50% w.r.t. ~1% in conventional V beams)

е	Error source [%]	$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$
Ū	Beam flux and near detector	2.9	4.8
25	(w/o ND280 constraint)	(25.9)	(21.7)
	ν interaction (external data)	7.5	6.8
	Far detector and FSI+SI+PN	3.5	7.3
	Total	8.8	11.1

0νββ

✓ Neutrinos are the only fermions that can be Majorana particles (v = anti-v)

- ✓ Explain the smallness of the v masses through see-saw mechanism → heavy Majorana partner would be the natural candidate to explain matter-antimatter asymmetry in the early universe
- ✓ Golden channel to observe Majorana nature of neutrinos → double beta decay without neutrinos → only possible if neutrinos are their own anti-particle
- ✓ Many experiments are taking / will take data in the next years

La prise de données

Complémentarité Belle 2 / LHCb

	Belle 2	LHCb upgrade
Statistique	$\overline{\mathfrak{S}}$	\odot
Evènements propres		$\overline{\mathbf{S}}$
Hadrons B produits	Bu, Bd, run dediés pour Bs	Bu, Bd, Bs, baryons,
Mode avec neutrinos	\odot	$\overline{\mathfrak{S}}$

Certaines mesures ne peuvent être faites que par Belle II ou LHCb ⇒ nécessité d'avoir les 2 expériences!

Compétitions et cross-check pour les mesures en commun

Experimental status of $K \rightarrow \pi v \bar{v}$

Reminder: Important to measure both K⁺, K_L

- New physics affects channels differently
- With both BRs unitarity triangle overconstrained

Experiments running, planned, or proposed

Expt.	Primary beam (E GeV)	Secondary beam (E GeV)	Start date + run years	SM events	Status
NA62	SPS (450)	positive (75)	2014+2	100	Ready
ORKA	FNAL MI (95)	<i>K</i> ⁺ (0.6)	2020+5	1000	Proposal
кото	JPARC-I (30)	neutral (2 peak)	2013+3	~3	Running
KOTO/2	JPARC-II (30)	neutral (~2 peak)	2025?	>100	Concept
FNAL K _L	Project X (3)	neutral (0.7 peak)	2030?	1000	Concept

 $K_L \rightarrow \pi^0 v \overline{v} < K^+ \rightarrow \pi^+ v \overline{v} < \text{ballistic}$

+ PRIN at SPS (nominally 2xbetter than KOTO)

Conclusion

Vaste programme mondial en physique des saveurs, expériences complémentaires qui seront capables de mesuré des parametres fondamentaux, restreindre l'espace de phase de la nouvelle physique ou la découvrir!

Merci de votre attention!

Et je vous rappelle qu'il y aura pas de reunion du vendredi aujourd'hui!!!

BACK-UP SLIDES

LBNO

20 kton, 1.5×10^{21} pot red: LBNO paper assumptions blue: $\sin^2(2\theta_{13}) = 0.10\pm0.03$ $\sin^2(\theta_{23}) = 0.38\pm0.02$ green: same as blue for oscillation parameters $+ \sigma(sig)/\sigma(bkg) 1\%/5\%$

LBNE (B.Wilson @ LAGUNA meeting on February)

35 kton, 3+3 years, 1.2 MW Dotted line (80 GeV, 5%/10%) can be compared with the LBNO blue curve Continuous line (80 GeV, 1%/5%) can be compared with LBNO green curve

$B_{(s)}^{0} \longrightarrow K_{S} h^{+} h^{-}$: prochaines étapes

- Dans l'immédiat :
 - Combiner les données de 2011 (1fb⁻¹) + 2012 (2fb⁻¹)
 - Effectuer une analyse en amplitude
 - En particulier, nous travaillerons sur l'état $B_{d,s} \longrightarrow K_S K^+ K^-$
 - − Dans le cadre du groupe de travaille, nous étudierons aussi l'état récemment observé $B_s \longrightarrow K_s K^{\pm} \pi^{\mp}$
 - L'analyse déterminera la structure du plan de Dalits des désintégrations
 - En même temps elle déterminera la faisabilité d'une analyse dépendante du temps
- Plus tard :
 - Effectuer, d'une manière graduelle, des analyses en amplitude plus compliquées qui nécessitent de l'étiquetage de saveur. Ceci est un défit avec LHCb (projet pour l'upgrade).
 - Des testes du modèle standard avec une analyse complète, dépendante du temps, pourrait être réalisés à une échelle de temps de 5 ans

1

Phase de mélange du B⁰_s : plan pour le moyen terme

 En attendant qu'un analyse dépendante du tagging sera effectuée avec l'upgrade, nous exploiterons l'évolution temporelle de l'état initial pure B⁰_s :

$$\frac{d\Gamma\left[B_{s}^{0}(t) \rightarrow f\right]}{dt} \propto e^{-\Gamma t} \left[\left(\left|A_{f}\right|^{2} + \left|\overline{A}_{f}\right|^{2} \right) \cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + \left(\left|A_{f}\right|^{2} - \left|\overline{A}_{f}\right|^{2} \right) \cos\left(\Delta m_{s}t\right) + 2\operatorname{Re}\left(\frac{q}{p}A_{f}^{*}\overline{A}_{f}\right) \sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - 2\operatorname{Im}\left(\frac{q}{p}A_{f}^{*}\overline{A}_{f}\right) \sin\left(\Delta m_{s}t\right) \right]$$

$$\frac{d\Gamma\left[\overline{B}_{s}^{0}(t) \rightarrow f\right]}{dt} \propto e^{-\Gamma t} \left[\left(\left|A_{f}\right|^{2} + \left|\overline{A}_{f}\right|^{2} \right) \cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - \left(\left|A_{f}\right|^{2} - \left|\overline{A}_{f}\right|^{2} \right) \cos\left(\Delta m_{s}t\right) + 2\operatorname{Re}\left(\frac{q}{p}A_{f}^{*}\overline{A}_{f}\right) \sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + 2\operatorname{Im}\left(\frac{q}{p}A_{f}^{*}\overline{A}_{f}\right) \sin\left(\Delta m_{s}t\right) \right]$$

- Le terme en sinh donne une sensibilité à la phase de mélange même sans tagging de saveur !
- A présent nous évaluons la précision fournie par cette procédure avec les datasets présent et future (avant upgrade).

Mesure de l'angle γ

 Nous avons discuté avec un groupe de théoriciens (David London et al.) qui proposent d'extraire la phase faible γ à partir d'analyse en amplitudes des modes B → Kππ et B → KKK en exploitant la symétrie SU(3)

```
Phys. Lett. B 728 (2014) 206-209).
```

- la comparaison de l'angle γ mesuré dans des processus comportant des boucles avec ses mesures classiques dans des processus en arbres fournit un test du modèle standard.
- Nous faisons des tests approfondis afin de nous convaincre que les erreurs expérimentales sur γ sont contrôlables. En fonction du résultats, nous orienterons des efforts dans cette direction

Les études préliminaires dans Phys. Lett. B 728 (2014) 206-209 suggèrent une précision de quelques degrés sur γ . A vérifier !

Désintégrations du méson B_c sans particule charmée

- Terrain de jeu intéressant pour la recherche de nouvelle physique
 - Processus similaire à B →D^(*)τv (en tension avec le MS, cf. Babar). Nécessite de sonder les propriétés du boson intermédiaire par une analyse angulaire
- Ces désintégrations n'ont pas encore été observées.
- Le groupe du LPNHE a été <u>pionnier</u> dans la recherche de ces modes, faisant partie de l'analyse effectué sur données de 2011 (état final K_SK⁺) Phys.Lett. B726 (2013) 646-655. Premier limite supérieur sur le rapport de rapports d'embranchement:

 $\frac{f_c}{f_u} \cdot \frac{\mathcal{B}(B_c^+ \to K_{\rm s}^0 K^+)}{\mathcal{B}(B^+ \to K_{\rm s}^0 \pi^+)} < 5.8 \times 10^{-2} \text{ at } 90\% \text{ confidence level}$

- Grands échantillons de données nécessaires
- Production de B_c fortement supprimée
- Désintégration (pas clair encore)
 - Extrapolation de processus d'annihilation du B_d : $BR(B_c{\rightarrow}K_SK^{+}){\sim}O(10^{-6})$
 - Calcul perturbatif de avec l'échange d'un seul gluon : BR~O(10⁻⁸) maximum
 - Plan pour le moyen term
 - Avec les données de Run1+Run2 : continuer l'étude déjà fait avec 1fb⁻¹, espérant de trouver du signal significatif de canaux comme K*⁰K⁺ and K_SK⁺.
 - Concevoir et optimiser un trigger spécifique et des critères de sélection pour les études plus sophistiqués de ce mode avec l'upgrade (point suivant...)
 - Long term
 - Analyse permettant de sonder la nature du boson intermédiaire (est-ce un boson scalaire chargé ?). Nécessaire une analyse angulaire d'états finals VV (e.g. $B_c \rightarrow K_1(1270)K^*(892)$) 49

COMET E21

Phase I pour atteindre une sensibilité de 10-14 puis Phase II Financement approuvé en 2012 (FJY) Faisceau pulsé de protons pour produire un faisceau de muons de haute intensité. Cible d'arrêt : 17 disques d'Al.

Participation du Groupe Muon du LPNHE approuvé par la Collaboration COMET en décembre 2012

- Simulation et « tracking »

- Caractérisation d'une cible active d'arrêt de muons en Si et de mesure de faisceau.

http://comet.kek.jp/Introduction.html

g-2/EDM E34

Faisceau de muons de haute intensité produit par un faisceau de protons de 3 GeV. Accélération des muons à partir de la production de muonium. Champ électrique « nul », pas de « moment magique ».

Participation du groupe Muon du LPNHE approuvé par la Collaboration g-2/EDM en 2011

- Simulation et « tracking »
- Caractérisation du détecteur.

2900 mm

A noter : Session g-2 dans le cadre de Photon2013 (exposé de Maurice B. et de Bogdan M.)

Physique des interactions photon-photon dans le cadre de l'ILC, d'un FCC (TLEP), de BelleII et des contributions HIbL à g-2.

PUB : pour la première fois,
« An analytical expression of the asymptotic QED cross-section of four lepton two pair production in γ γ collisions »
W. da Silva, F.Kapusta, Physics Letters B 718 (2012)
Et d'autres papiers en préparation sur la production de pions et les collisions ultra périphériques sur ALICE

Photon2015 à Novosibirsk chez Valery Telnov

Précisions attendues

Observable	SM theory Current measurement		Belle II
Observable	Sivi theory	(early 2013)	$(50 \mathrm{ab^{-1}})$
$S(B \rightarrow \phi K^0)$	0.68	0.56 ± 0.17	± 0.03
$S(B \rightarrow \eta' K^0)$	0.68	0.59 ± 0.07	± 0.02
α from $B \to \pi \pi, \rho \rho$		$\pm 5.4^{\circ}$	$\pm 1.5^{\circ}$
γ from $B \to DK$		$\pm 11^{\circ}$	$\pm 1.5^{\circ}$
$S(B \to K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.03
$S(B o ho \gamma)$	< 0.05	-0.83 ± 0.65	± 0.15
$A_{\rm CP}(B \to X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06	± 0.02
$A^d_{ m SL}$	-5×10^{-4}	-0.0049 ± 0.0038	± 0.001
$\mathcal{B}(B \rightarrow \tau \nu)$	$1.1 imes 10^{-4}$	$(1.64\pm0.34) imes10^{-4}$	$\pm 0.05 \times 10^{-4}$
$\mathcal{B}(B o \mu u)$	$4.7 imes10^{-7}$	$< 1.0 \times 10^{-6}$	$\pm 0.2 \times 10^{-7}$
$\mathcal{B}(B \to X_s \gamma)$	3.15×10^{-4}	$(3.55\pm 0.26)\times 10^{-4}$	$\pm 0.13 \times 10^{-4}$
$\mathcal{B}(B \to K \nu \overline{\nu})$	$3.6 imes 10^{-6}$	$<1.3\times10^{-5}$	$\pm 1.0 \times 10^{-6}$
$\mathcal{B}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 6 \mathrm{GeV^2})$	$1.6 imes 10^{-6}$	$(4.5 \pm 1.0) \times 10^{-6}$	$\pm 0.10 \times 10^{-6}$
$A_{\rm FB}(B^0 \to K^{*0} \ell^+ \ell^-)$ zero crossing	7%	18%	5%
$ V_{ub} $ from $B \to \pi \ell^+ \nu~(q^2 > 16{\rm GeV^2})$	9% ightarrow 2%	11%	2.1%

From Snowmass report arXiv:1401.6077v1

Physiques des kaons

 Il reste encore des mesures à faire avec les kaons! En particulier les désintégrations rares

From Snowmass report arXiv:1401.6077v1

Observable	SM Theory	Current Expt.	Future Experiments
$\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$	$7.81(75)(29) \times 10^{-11}$	$1.73^{+1.15}_{-1.05} \times 10^{-10}$	~10% at NA62
		E787/E949	${\sim}5\%$ at ORKA
			${\sim}2\%$ at ProjectX
$\mathcal{B}(K_L^0 \to \pi^0 \nu \overline{\nu})$	$2.43(39)(6) \times 10^{-11}$	$< 2.6 \times 10^{-8}$ E391a	1 st observation at KOTO
			${\sim}5\%$ at ProjectX
$\mathcal{B}(K_L^0 \to \pi^0 e^+ e^-)$	$(3.23^{+0.91}_{-0.79}) \times 10^{-11}$	$< 2.8 \times 10^{-10}$ KTeV	${\sim}10\%$ at ProjectX
$\mathcal{B}(K_L^0 \to \pi^0 \mu^+ \mu^-)$	$(1.29^{+0.24}_{-0.23}) \times 10^{-11}$	$< 3.8 \times 10^{-10}$ KTeV	${\sim}10\%$ at ProjectX
$ P_T $	$\sim 10^{-7}$	< 0.0050	< 0.0003 at TREK
in $K^+ \to \pi^0 \mu^+ \nu$			< 0.0001 at ProjectX
$\Gamma(K_{e2})/\Gamma(K_{\mu 2})$	$2.477(1) imes 10^{-5}$	$2.488(10) imes 10^{-5}$	$\pm 0.0054 \times 10^{-5}$ at TREK
		(NA62, KLOE)	$\pm 0.0025 \times 10^{-5}$ at ProjectX
$\mathcal{B}(K_L^0 \to \mu^{\pm} e^{\mp})$	$< 10^{-25}$	$<4.7\times10^{-12}$	$< 2 \times 10^{-13}$ at ProjectX

BES III

- Seule expérience dediée au charme actuellement
- IHEP, Beijing
- BEPCII collider :
 - beam-energy 1.0-2.3GeV
 - $L = 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - 2004 : début construction
 - 2009-aujourd'hui : prise
 - de données
 Programme de physique
 - Charm physics
 - Light hadron physics
 - Charmonium physics
 - > XYZ meson physics
 - QCD & τ -physics

BES III

Charm spectroscopy <u>(tetraquarks)</u>

MARK-III

BES-I

BES-II

PDG2010

0.15

 $B(D^+ \rightarrow \mu^+ \nu_{\mu})$ [%]

+0.07% # 90% C.L.

(0.122*6711+0.010)%

(0.035-0.014-0.006)%

(0.8440:0.0066 40.000)%

(0.036210.0033)%

0.1

0.05

(0.66^{-0.16,0.08}/7v

Charm leptonic decay

- Constante de désintégration fp intègre les effets de l'interaction forte
- Mesure expérimentale permet de valider theory (LQCD) afin de l'appliquer à la physique du B (oscillation B neutre) qui requiert de l'information sur f
- (contribution Higgs chargé...)

