# Cluster detections in large multiband imaging surveys

#### Florence Durret, IAP

#### Main collaborators:

- Christophe Adami
- Christophe Benoist
- Emmanuel Bertin
- Alberto Cappi
- Jean Coupon
- Olivier Ilbert
- Isabel Márquez
- Sophie Maurogordato
- Tabatha Sauvaget
- Melville Ulmer

## Why search for clusters?

• Clusters are interesting objects *per se* 

 Cosmological interest: cluster counts give constraints on cosmological parameters



Vikhlinin et al. 2009, ApJ 692, 1060

#### The data

#### **CFHTLS** u\*, g', r', i' or y, z' bands

Mazure et al. 2007: Deep 1 field

- Adami et al. 2010:
  - Deep fields: Deep 2, Deep 3 and Deep 4

- Wide fields (34 deg<sup>2</sup>): Wide 1, Wide 3 and Wide 4 from data release 4

Durret et al. 2011:

- Wide fields (154 deg<sup>2</sup>) from data release 6 cut at  $z' \le 22.5$ 

#### **SDSS Stripe 82**

> 270 deg<sup>2</sup>

> 5.4 10<sup>6</sup> galaxies with  $z_{phot} \le 0.75$  (z <sub>phot</sub> from Reis et al. 2012, ugriz magnitudes from Annis et al. 2011)

#### Our cluster finder in a nutshell: AMACFI (Adami & Mazure Cluster FInder)

- Apply magnitude limits to galaxy catalogues to avoid incompleteness effects
- Estimate photometric redshifts for all galaxies with LePhare (O. Ilbert, J. Coupon)
- Build galaxy density maps in photo-z bins of 0.1 incremented by 0.05 based on an adaptive kernel technique
- > Detect structures in these maps with SExtractor at a chosen significance level  $(3\sigma, 4\sigma, 5\sigma, 6\sigma, 9\sigma)$
- 5 > Assemble the structures detected with a friends-offriends algorithm (minimal spanning tree)



## Example of a density map:

CFHTLS Deep 2 field in the [0.65-0.75] redshift bin

Two candidate clusters detected at  $6\sigma$ 

### Validation on Millennium simulation

 Validate method by applying same procedure to the Millennium simulation (modified to be comparable to our data)

 Estimate masses as a function of detection threshold

 Estimate percentages of fake detections as a function of redshift and of detection threshold

• Estimate errors on cluster positions

## **CFHTLS:** a few results

#### Adami et al. (2010)

- 1200 cluster candidates
- Cluster candidates at  $z \ge 1$ : 141 at 3 $\sigma$ , 31 at 6 $\sigma$

#### Durret et al. (2011)

• 4061 cluster candidates, redshift range 0.2<z<1.15 , masses between 1.3  $10^{14}$  and 1.3  $10^{15}$  M<sub>solar</sub>

• Cluster candidates at  $z \ge 1$ : 821 at 3 $\sigma$ , 32 at 6 $\sigma$ 

 These cluster candidates have typical cluster properties (colourmagnitude relation, luminosity function)

## Redshift distribution of the clusters detected at $\geq 4\sigma$ in all the Wide fields



Romer et al. 2001, ApJ 547, 594

In progress: full analysis of all the CFHTLS candidate clusters (Maurogordato et al. in preparation)

Properties of candidate clusters stacked by redshift or mass (significance level of detection):

colour-magnitude relations

galaxy luminosity functions and Schechter function fits

Large scale structure around candidate clusters

## **SDSS Stripe 82**: 957 candidate clusters at z≤0.75



11

Durret et al. in preparation

#### Stripe 82 clusters stacked in redshift bins

#### Colour-magnitude diagrams



#### **Galaxy Luminosity Functions**



Black: all galaxies within 2 Mpc radius Green: galaxies within 2 Mpc and z cluster  $\pm 0.1$  Galaxy luminosity function of stacked clusters in the 0.35<z<0.45 redshift bi n

#### The properties of stacked clusters are similar to those of clusters

**75% of the clusters we detect at 4σ and above are also detected by** Geach et al. (2011), MNRAS 413, 3059

### Morphological analysis of cluster galaxies in the Stripe 82



Percentage of late-type galaxies in stacked clusters as a function of redshift (left) and significance level/mass (right) of cluster detection

No strong variation

13

#### AMACFI was applied to mock catalogues as part of the Euclid cluster finder challenge

• Main present limitation: the spatial resolution

• Need to cut the original catalogue in smaller overlapping zones

Needs to be to parallelized

• To analyse 100 deg<sup>2</sup> mock catalogue,  $\sim$ 100 hours computing time!

 Compromise difficult to find between computing time, and catalogue completeness and purity

### A few conclusions

 An important fraction of our candidate clusters are likely to be real clusters

• Analysis of properties of stacked clusters is under way

Candidate clusters could be correlated with X-ray data

• Application of AMACFI to mock catalogues for Euclid cluster finder challenge: analysis of completeness and purity in progress

AMACFI can be applyied to other large surveys (NSLS)