NSLS software and products

Emmanuel Bertin (IAP)

Outline

- Data volume
- Data calibration: requirements and strategy
- Software evolution since CFHTLS: some highlights
 - Astrometry / proper motions
 - Star/galaxy separation
 - Galaxy morphometry and shear measurement
- Automatizing quality control
- Ongoing developments

Expected data volume

- 7500 \times 1.2 \times 4 \times 3 \approx 100,000 science exposures
- ~300TB of reduced science pixel data (uncompressed) including weight and flag maps.
 - Similar to or lower than large ongoing sky surveys
- May be a few PB if using external data ("poorman's LSST")

Data calibration

- Science from large surveys limited by systematics in the calibration
 - Possible goals (not totally unrealistic by today's standards):
 - relative photometry: 10 mmag
 RMS (except u-band)
 - relative astrometry: 10 mas RMS (except u-band)
- Importance of having large dithers (e.g. between epochs) for internal calibration, see e.g. Holmes et al. 2012
 - Coadds generate abrupt changes in the PSF
 - Multi-epoch / multiband processing required
- Part of a multisurvey?

Fig. 2.— Focal-plane footprints projected onto the synthetic sky according to the four simple survey strategies described in Section 5 and summarized in Table 2. Surveys A, B and D have 1296 pointings and survey C has 1290 pointings.

Astrometric calibration

- DANCe project Bouy et al. 2013+
 - Combination of archival and new observations, including MEGACAM
 - 40,000 exposures from a dozen wide-field mosaic cameras processed so far
 - 10^7 's of proper motions down to i~24 and $|\sigma_{\mu}|$ ~0.3 mas/yr
 - Doubled the number of known Pleiades members

Correcting for bulk stellar motions

proper motions

Expected pm uncertainties

SPREAD MODEL: a morphometric estimator

- SPREAD_MODEL confronts the object image x to both the local PSF ϕ and to a barely resolved, PSF-convolved exponential model G
- Linear discriminant analysis: maximize the ratio of inter-class to intra-class scatter

$$w. x = W(\phi - G). x$$

 We normalize with respect to the local PSF and galaxy model:

$$\mathtt{SPREAD_MODEL} = \frac{\phi^T \mathbf{W} x}{\phi^T \mathbf{W} \phi} - \frac{G^T \mathbf{W} x}{G^T \mathbf{W} G}$$

- W=inverse of the image covariance matrix
- \emph{G} is the convolution of the local PSF with a circular exponential profile with $r_{\rm h}={\rm FWHM}/16$
- SPREADERR_MODEL can be used to define the decision boundary with respect to the stellar locus

SPREAD_MODEL performance

courtesy of I.Sevilla (DES)

- Much better performance than CLASS_STAR
- Helps meet Dark Energy Survey requirements (purity ≥ 97%)
- Multiple SPREAD_MODEL
 measurements for the same
 source can be combined
- The stellar locus itself can be used to monitor things such as the accuracy/stability of the PSF model and consistency of the data

Morphometry and shear measurement

- Galaxy model-fitting
 - ~MLE/MAP point estimation
 - Fast: 1-50 galaxies/s/CPU
 - Uncertainties estimated from the approximate Hessian
 - Choice of models
 - New photometric estimator optimized for color measurements
- Code has matured through collaborations in various contexts and data regimes

Shear measurements

- PSF-corrected ellipticity measurements and uncertainties available in the output catalog
- Great3 challenge winners all based on point estimation through model-fitting
 - Close to meeting requirements of next-gen surveys for SNRs ≥ 10~20
- Amalgam team working on the measurement of higher order distortions

Great3 data courtesy of A.Donnarumma / Amalgam team

Quality control with SPREAD MODEL

Ongoing developments: SExtractor 3

- Multi-epoch, multi-band, multi-object, multi-grid measurements
 - Data fusion before cataloging
 - Get rid of PSF homogenization for surveys with large dithers (e.g., DES)
- Iterative deblending
 - Much better modelling of detections
- Multithreaded

