## Mapping the Milky Way halo with NSLS

## Beyond SDSS \& Pan-STARRSI

## + MSE (ex-ngCFHT)

## Pan-STARRSI

(Slater et al. subm.)

(Strasbourg Astronomical Observatory
\& MPIA, Heidelberg)

## Rodrigo Ibata

(Strasbourg Astronomical Observatory)

## Cosmology on galaxy scales

## the new frontier

- Large scale cosmology is now largely understood
- ^ Cold Dark Matter universe
- How do baryons condense at the center of dark matter halos?
- Clear discrepancy between dark matter and stellar distributions
- "missing satellite crisis"
- hierarchical build-up?



## M3 I (PAndAS)



Thomas, Martin, Ibata, et al. (in prep)

## The SDSS breakthrough

Belokurov, Zucker et al. (2006+).


## Are structures consistent with $\Lambda$ CDM?



What stellar halo at $D>50 \mathrm{kpc}$ ?


## Deconstructing the halo with NSLS



PAndAS (MW)
Field of Streams
17 kpc
22 kpc
32 kpc
Beyond SDSS depths

Fainter!

## Deconstructing the halo with NSLS

Luau Large Programme (Ibata


Fainter!
Further!

## Deconstructing the halo with NSLS



## out to 30 kpc (matching GAIA volume)!

## The MW satellite system

Bullock et al. (20 10)


## The faint end of galaxy formation

Koposov et al. (2009)


# Large uncertainty at faintest end, the most sensitive! 

## Need to find many more

## sunnnary

- With NSLS...
- ...go beyond mapping the local environment
- $30 \mathrm{kpc} \rightarrow \sim 60 \mathrm{kpc}$ for MSTO stars ( $60 \mathrm{kpc} \rightarrow \sim 120 \mathrm{kpc}$ for BHB stars)
- ...investigate the nature of faintest MW satellites
- ...superb star/galaxy separation to gri $\sim 24.5$


## The <br> Mauna Kea Spectroscopic Explorer

5

## The "Next Generation CFHT" original concept

Create a new and expanded partnership to:

1. replace the present 3.6 m primary mirror with a 10 m -class (segmented) mirror, mounted on the existing pier.
2. install a dedicated wide-field ( $1.5 \mathrm{deg}^{2}$ ) multi-object spectrograph that can simultaneously collect spectra for $>3000$ sources.


## MSE/ngCFHT Development:

Completed (unsolicited) Feasibility Studies at http://ngcfht.org See also: http://mse.cfht.hawaii.edu


## Primary Outcomes

- Redevelopment could utilize the existing pier and building with only minor modifications.
- The conversion would not increase the visual footprint of CFHT on Mauna Kea.
- No technical "show stoppers" with the telescope, enclosure, spectrograph, fibre-feed model.


## Defining concept of MSE

MSE will:

- obtain efficiently very large numbers ( $>10^{6}$ ) of low- ( $\mathrm{R} \sim 2$ 000), moderate( $R \sim 6500$ ), and high-resolution ( $R \sim 20000$ ) spectra
- for faint (20<g<24) science targets
- over large areas of the sky ( $10^{3}-10^{4}$ sq.deg )
- spanning blue/optical to near-IR wavelengths ( $0.37-1.3 \mu \mathrm{~m}$ ).
- At the highest resolutions, it should have a velocity accuracy of $\ll 1 \mathrm{~km} / \mathrm{s}$
- At low resolution, complete wavelength coverage should be possible in a single observation
- Unique science cases of MSE stemming from:
- 10 m aperture
- Operation at a range of spectral resolutions
- Dedicated Operations, producing stable, well-calibrated and characterised data
- Long lifetime
- Natural path from 4m-class facilities (MS-DESI, 4MOST, HERMES...) and $8 m$ class instruments (Subaru/PFS) to MSE



## sunnnary

- With NSLS...
- ...go beyond mapping the local environment
- $30 \mathrm{kpc} \rightarrow \sim 60 \mathrm{kpc}$ for MSTO stars ( $60 \mathrm{kpc} \rightarrow \sim 120 \mathrm{kpc}$ for BHB stars)
- ...investigate the nature of faintest MW satellites
- . . superb star/galaxy separation to gri ~ 24.5
- Extraordinary complementarity with MSE
- well matched target provider in North + Euclid calibration
- No strong observing strategy requirement
- but 3 sub-exp preferred (variability) + largely staggered fields
- Luau could provide a large chunk of u-band observations

