Mapping the Milky Way halo with NSLS

Beyond SDSS & Pan-STARRS I

+ MSE (ex-ngCFHT)

Pan-STARRSI

(Slater et al. subm.)

Nicolas Martin

(Strasbourg Astronomical Observatory & MPIA, Heidelberg) **Rodrigo Ibata** (Strasbourg Astronomical Observatory)

@nfmartin1980

Cosmology on galaxy scales

the new frontier

- Large scale cosmology is now largely understood
 - A Cold Dark Matter universe
- How do baryons condense at the center of dark matter halos?
- Clear discrepancy between dark matter and stellar distributions
 - "missing satellite crisis"
 - hierarchical build-up?

The SDSS breakthrough

Belokurov, Zucker et al. (2006+)...

Are structures consistent with ACDM?

What stellar halo at D>50 kpc?

Bell et al. (2006+)

Deconstructing the halo with NSLS

Martin et al. (2014)

PAndAS (MW) Field of Streams 17 kpc 22 kpc 32 kpc Beyond SDSS depths

Fainter!

Deconstructing the halo with NSLS

Deconstructing the halo with NSLS

lvezić et al. (2012)

out to 30 kpc (matching GAIA volume)!

The MW satellite system

Bullock et al. (2010)

The faint end of galaxy formation

Koposov et al. (2009)

Large uncertainty at faintest end, the most sensitive!

Need to find many more

Summary

• With NSLS...

- ...go beyond mapping the local environment
 - 30 kpc \rightarrow ~60 kpc for MSTO stars (60 kpc \rightarrow ~120 kpc for BHB stars)
- ... investigate the nature of faintest MW satellites
- ... superb star/galaxy separation to gri ~ 24.5

The Mauna Kea Spectroscopic Explorer

The "Next Generation CFHT" original concept

Create a new and expanded partnership to:

- 1. replace the present 3.6m primary mirror with a 10m-class (segmented) mirror, mounted on the existing pier.
- 2. install a **dedicated** wide-field (1.5 deg²) multi-object spectrograph that can simultaneously collect spectra for >3000 sources.

MSE/ngCFHT Development: Completed (unsolicited) Feasibility Studies at <u>http://ngcfht.org</u> See also: <u>http://mse.cfht.hawaii.edu</u>

Defining concept of MSE

MSE will:

- obtain efficiently very large numbers (>10⁶) of low- (R ~ 2 000), moderate-(R ~ 6 500), and high-resolution (R ~ 20 000) spectra
- for faint (20 < g < 24) science targets
- over large areas of the sky ($10^3 10^4$ sq.deg)
- spanning blue/optical to near-IR wavelengths (0.37 1.3 μ m).
- At the highest resolutions, it should have a velocity accuracy of <<1 km/s
- At low resolution, complete wavelength coverage should be possible in a single observation
- \cdot Unique science cases of MSE stemming from:
 - · 10 m aperture
 - \cdot Operation at a range of spectral resolutions
 - \cdot Dedicated Operations, producing stable, well-calibrated and characterised data
 - · Long lifetime
- Natural path from 4m-class facilities (MS-DESI, 4MOST, HERMES...) and 8m class instruments (Subaru/PFS) to MSE

Space-based Completement

Wide-field Follow-up

MSE

NSLS-fed targets
Euclid photo-z calibrator (need 30k spectra down to AB 24.5)

Summary

• With NSLS...

- ...go beyond mapping the local environment
 - 30 kpc $\rightarrow \sim$ 60 kpc for MSTO stars (60 kpc $\rightarrow \sim$ 120 kpc for BHB stars)
- ... investigate the nature of faintest MW satellites
- ... superb star/galaxy separation to gri ~ 24.5

• Extraordinary complementarity with MSE

• well matched target provider in North + Euclid calibration

No strong observing strategy requirement

- but 3 sub-exp preferred (variability) + largely staggered fields
- Luau could provide a large chunk of u-band observations