

Experimental searches for tHq

TOP 2014, Cannes

Christian Böser¹ on behalf of the ATLAS and CMS collaborations, prepared with the help of Andrey Loginov² | 02.10.2014

¹KARLSRUHE INSTITUTE OF TECHNOLOGY

²YALE UNIVERSITY

Introduction to pp \rightarrow tHq

• Investigate coupling of the Higgs boson to fermions $\rightarrow A_{tHq} \propto (\kappa_V - \kappa_f)$

- Destructive interference in SM ⇒ cross-section is 18.3 fb
- With $\kappa_{\rm t}^{\dagger} = -1$
 - $\sigma_{tHq} = 234 \text{ fb}$
 - 13 times enhanced compared to SM case
 - BR(H $\rightarrow \gamma \gamma$) 2.4 times enhanced

$†$
 $\kappa_{\mathrm{t}}=\mathrm{Y_{t}}/\mathrm{Y_{t}^{SM}}$

Motivation

 tHq also sensitive to other modifications of the SM (FCNC, single vector-like quarks, ..)

- Coupling constraints from ATLAS + CMS disfavor $\kappa_t = -1$, under assumption of only SM contributions to the total width
- BSM contributions to the loops in the H $\gamma\gamma$ and Hgg couplings are allowed $\rightarrow \kappa_t = -1$ still tolerated

Experimental investigation of tHq and $\kappa_{\rm t}$

ATLAS	R	CMS
Constraints on κ_t via ttH search	Approach	Search for tHq with $\kappa_{ m t}=-1$
${\rm H} \to \gamma \gamma$	Channels	$\begin{array}{c} H \to \gamma \gamma \\ & & & \\ & & & \\ \hline & & H \to b \bar{b} \end{array}$
MADGRAPH + PYTHIA 8 4-Flavor Scheme (FS)	tHq MC	MADGRAPH + PYTHIA 6 5FS ($\gamma\gamma$), 4FS (<i>bb</i>)

4-flavor vs. 5-flavor scheme

- Additional b quark only through parton shower in 5-flavor scheme
- Better description of spectator b quark kinematics in 4-flavor scheme

CMS: Direct search for tHq and H $\rightarrow \gamma \gamma$ with $\kappa_{\rm t} = -1$ CMS-PAS-HIG-14-001

CMS H $ightarrow \gamma\gamma$: Overview

• Search for resonance in $m(\gamma\gamma)$ distribution

CMS

Reconstruction

- Higgs: 2 photons with $p_{\rm T} > 50 \cdot m_{\gamma\gamma}/120$ and 25 GeV
- Top:
 - 1 lepton with > 10 GeV and $\Delta R >$ 0.5 w.r.t. photons
 - 1 b-tagged jet with > 20 GeV
 - No cut on ∉_T

• Recoil jet: Hardest additional jet, must have $p_{\rm T} > 20~{
m GeV}$ and $|\eta| > 1$

CMS H $ightarrow \gamma\gamma$: Overview

Search for resonance in $m(\gamma\gamma)$ distribution

Reconstruction

- Higgs: 2 photons with $p_{\rm T} > 50 \cdot m_{\gamma\gamma}/120$ and 25 GeV
- Top:
 - 1 lepton with > 10 GeV and $\Delta R >$ 0.5 w.r.t. photons
 - 1 b-tagged jet with > 20 GeV
 - No cut on ∉_T

Recoil jet: Hardest additional jet, must have $p_{\rm T} > 20~{
m GeV}$ and $|\eta| > 1$

- 5-variable likelihood discriminant (LD) to suppress ttH background
- Cut on LD > 0.25
- Ensures tt H contamination < 10%</p>
- Selection efficiency tHq: 17%

Process	Yield
tHq ($\kappa_{\rm t} = -1$)	0.67
tīH	0.03 + 0.05
VH	0.01 + 0.01
other H	0

CMS H $ightarrow \gamma\gamma$: Results

Background shape

CMS: Direct search for tHq and H \rightarrow bb with $\kappa_{\rm t} = -1$

CMS-PAS-HIG-14-015

Posters @ TOP 2014:

- Event interpretation in the context of the search for $H \rightarrow b\bar{b}$ in association with single top quarks, Andrey Popov
- Search for H → bb in association with single top quarks as a test of Higgs couplings, Benedikt Maier

CMS $\rm H \rightarrow b\bar{b}:$ Overview

- Challenging multijet final state
- 3 or 4 b jets (spectator b outside of tracker acceptance in ~ 30% of the cases)
- 1 forward light jet

Expected	yields
----------	--------

	S/B	
3 tag region	\sim 0.7%	(13/1900 events)
4 tag region	\sim 2.1%	(1.4/66 events)

CMS H \rightarrow bb̄: Overview

- Challenging multijet final state
- 3 or 4 b jets (spectator b outside of tracker acceptance in \sim 30% of the cases)
- 1 forward light jet
- Expected yields

	S/B	
3 tag region	\sim 0.7%	(13/1900 events)
4 tag region	\sim 2.1%	(1.4/66 events)

- tt production dominant background
 - Monte Carlo approach
 - Data-driven cross-check
- Validation of input variables in tt control region

 Three MVAs for reconstruction and classification

CMS H \rightarrow b \bar{b} : MVA power³

Reconstruction

 Jet assignment to final state quarks is combinatorial issue

Train two MVAs for jet assignment

- under signal hypothesis
- under tt hypothesis
- Reconstruct all possible combinations
- Take assignment with largest MVA output

Classification

CMS H \rightarrow bb: Results

Fit on MVA response in 4 regions

Diboson			
W+Jets stat.+sys. 50x tHq	DD cross-check	6.95	6.2
	 Results in good CMS Prelimin CMS Prelimin 	agreeme	nt with
1 /A output (8 TeV)	10° TH(bb)q, m _H =12 3° 3T+4T regions 10^{3}	25 GeV (e+μ)	 Data tHq, y₁= All bkgs Bkg. un
CMS minary	10 ²		

95% Upper Limit on $\sigma/\sigma_{\kappa_t=-1}$ observed expected $5.14^{+2.14}_{-1.44}$ MC approach 7.57 $4^{+2.26}_{-1.71}$

SM

ATLAS: Constraints on κ_t via tTH search

CERN-PH-EP-2014-179

submitted to Physics Letters B

ATLAS H $ightarrow \gamma\gamma$: Reminder

- Details provided in Mark's talk
- Search for resonance in m(γγ) distribution
- High ttH purity event selection
- Selection efficiency tHq: 6.2%
- tH production non-negligible background

Compared results on ttH with H $ightarrow \gamma\gamma$

	observed	expected (SM signal injected)
ATLAS	6.7	6.2
CMS	7.4	5.7

ATLAS: From tt H search to constraints on κ_t

Yields:

 $\kappa_{\rm t}$ changes cross-sections and BR(H $\rightarrow \gamma \gamma$)

ATLAS H $ightarrow \gamma\gamma$: Results

- Scan κ_t, set other couplings to SM values
- Null hypothesis: background
 + SM Higgs production

ŝ	95% C.L. Lii	mit on $\kappa_{ m t}$		
		Observed	Expected	
	Upper Limit	+8.0	+7.8	
	Lower Limit	-1.3	-1.2	

- Consistent with SM expectation of κ_t = 1
- Best fit for κ_t slightly below 0

Summary

- Investigation of tHq is an active field with a lot of potential
- Great results already with the current data
- Short term plans
 - ATLAS: Including tt
 H results on κ_t into coupling exclusions
 - CMS: Combination of all available tHq searches
- MC: aMC@NLO will replace MadGraph as tHq generator
- Stay tuned!

	$\sigma_{\sf NLO}(\sf pp)$	ightarrow tHq [fb]
	$\kappa_{F} = 1$	$\kappa_{ m F}=-1$
8 TeV	18.3	234
14 TeV	88.2	982

BACKUP

Cross sections

- Cross section is challengingly small
 - The main background is $t\bar{t}$; its cross section is provided for comparison

Cross-section	8 TeV	14 TeV
$tHq, y_t = +1$ (SM)	$18.3\pm0.4\text{fb}$	$88.2^{+1.7}_{-0.0}{\rm fb}$
$tHq, y_t = -1$	$233.8^{+4.6}_{-0.0}{ m fb}$	$980^{+30}_{-0}{ m fb}$
tīt	$245^{+9}_{-10}{ m pb}$	$950^{+40}_{-30}{ m pb}$

tHq cross sections are cited according to M. Farina et al., JHEP 1305 (2013) 022 [arXiv:1211.3736]. Cross-sections for $t\bar{t}$ are calculated in M. Czakon, P. Fiedler, Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254]. Uncertainties are combined following R. Barlow, arXiv:physics/0306138

$$\mathcal{A} = \frac{g}{\sqrt{2}} \left[(c_F - c_V) \frac{m_t \sqrt{s}}{m_W v} A\left(\frac{t}{s}, \varphi; \xi_t, \xi_b\right) + \left(c_V \frac{2m_W}{v} \frac{s}{t} + (2c_F - c_V) \frac{m_t^2}{m_W v} \right) B\left(\frac{t}{s}, \varphi; \xi_t, \xi_b\right) \right]$$

with $c_F \equiv g_{ht\bar{t}}/g_{ht\bar{t}}^{SM}$; $c_V \equiv g_{hWW}/g_{hWW}^{SM}$ (M. Farina et al., arXiv:1211.3736)

Flavor Scheme Comparison

4FS, pp→tHq

- m(b) > m(p) → b quark is no proton constituent,
- *b* quarks can only be pair-produced in high Q^2 production

5FS, pp→tHq

- b quarks in initial state, i.e. inside the proton
- Additional b comes through parton shower

- 5 input variables for likelihood discriminant
 - jet multiplicity
 - transverse mass of the top candidate
 - pseudorapidity of the qJet candidate
 - rapidity gap between the lepton and the qJet
 - charge of the lepton candidate
- Cut on LD > 0.25
- Contribution of ttH less than 10%

$$\alpha = \frac{\int_{\text{signal region}} f_{bg}(m_{\gamma\gamma}) \mathrm{d}m_{\gamma\gamma}}{\int_{\text{sideband region}} f_{bg}(m_{\gamma\gamma}) \mathrm{d}m_{\gamma\gamma}}$$

- Used sidebands for maximum likelihood fit
 - CSVL: similar to the nominal selection, but defining the bJet candidate as the hardest jet in the event which pass the 'loose' CSV requirement
 - CSV0: same selection as the signal region, but defining the bJet candidate as the hardest jet in the event with $|\eta| < 2.4$, with no b-tagging requirement
 - InvID CSVL: same selection as CSVL, but with inverted photon ID criteria on one of the two photons
 - InvID CSV0: same selection as CSV0, but with inverted photon ID criteria on one of the two photons
- Fitted shape of the CSV0 CR ($\alpha = 7.7\%$) is taken as nominal. Full difference to InvID CSV0 ($\alpha = 10.2\%$) is taken as a systematic uncertainty (33 %)

Table : Summary of the adopted systematic uncertainties.

	tHq	tīH	VH	Continuous BG
Luminosity	±2.6%	±2.6%	±2.6%	-
PDF	+3.1/-2.5 %	±8%	$\pm 11\%$	-
QCD Scale	+4.8/-4.3 %	+11/-14 %	$\pm 2.3\%$	-
Signal Model	$\pm 5.5\%$	-	-	-
Photon Energy Resolution	+4/-2 %	+4/-2 %	+4/-2 %	-
Photon Energy Scale	+1/-4 %	+1/-4 %	+1/-4 %	-
Photon ID Efficiency	±2%	±2%	±2%	-
Vertex Efficiency	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	-
HLT	< 0.1%	< 0.1%	< 0.1%	-
JEC	$\pm 1.5\%$	+3/-5 %	$\pm 8\%$	-
JER	$\pm 0.5\%$	±3%	+8/-0 %	-
b-tagging	±2%	$\pm 1.5\%$	$\pm 0.1\%$	-
PU ID	±2%	$\pm 0.5\%$	±2%	-
Lepton Reconstruction	$\pm 1\%$	$\pm 1\%$	$\pm 1\%$	-
BG shape	-	-	-	33%

Baseline Selection

- Specialty: variable jet pT threshold
 - $p_{
 m T}$ > 20 GeV for $|\eta|$ < 2.4
 - $p_{
 m T} >$ 40 GeV for 2.4 $< |\eta| <$ 4.7
 - Broad binning in jet η (2.4 3.2 & > 3.2) for forward jets

Summary of the event selection:

1 μ/e , and it is tight

3-4 jets pass CSVT

 \geqslant 1 jet fails CSVT

 $p_{\mathrm{T}}(j_4) > 30 \; \mathrm{GeV}$

${\not\!\!E_{\rm T}} > {\rm 35/45\,GeV}\;(\mu/\textit{e})$

- Regions with 3 or 4 b-tags are considered as <u>independent bins</u> in the analysis
- In addition, exploit a <u>tt control region</u>.
 Differences in the selection:
 - Exactly two jets pass CSVT
 - At least three central jets ($|\eta| < 2.4$)

Input variables for the jet-assignment MVA under the tHq hypothesis

```
Electric charge of b-quark jet from decay of top quark, multiplied by lepton's charge. The jet charge is defined as in Eq. (1) in Ref. [37], with \kappa = 1
```

 ΔR between the two jets from decay of Higgs boson

 ΔR between b-quark jet and W boson from decay t \rightarrow bW

 ΔR between reconstructed top quark and Higgs boson

Pseudorapidity of recoil jet

Invariant mass of b-quark jet from decay of top quark and charged lepton

Mass of reconstructed Higgs boson

Pseudorapidity of the most forward jet from decay of H

Tranverse momentum of the softest jet from decay of H

Number of b-tagged jets among the two jets from decay of H

Boolean variable that equals 1 if the b-quark jet from decay of t is b-tagged, 0 otherwise

Relative H_T , $(p_T(t) + p_T(H))/H_T$

Input variables for the jet assignment under the $t\bar{t}$ hypothesis. In the descriptions, t_{had} and t_{lep} stand for hadronically and leptonically decaying top quarks, respectively.

Difference of electric charges of b-quark jets from decays of t_{had} and $t_{lep},$ multiplied by lepton's charge
ΔR between the two light-flavor jets from decay of t_{had}
ΔR between b-quark jet and W boson from decay $t_{had} \rightarrow bW$
ΔR between b-quark jet and W boson from decay $t_{lep} \rightarrow bW$
Difference between masses of t_{had} and W from decay of t_{had}
Pseudorapidity of t _{had}
Invariant mass of b-quark jet from decay of t_{lep} and charged lepton
Mass of W from decay of t _{had}
Number of b-tagged jets among the two light-flavor jets from decay of $\mathrm{t}_{\mathrm{had}}$
Boolean variable that equals 1 if the b-quark jet from decay of t_{had} is b-tagged, 0 otherwise
Boolean variable that equals 1 if the b-quark jet from decay of t_{lep} is b-tagged, 0 otherwise
Transverse momentum of t _{had}
Transverse momentum of t _{lep}
Relative $H_{\rm T}$, $(p_{\rm T}({\rm t}_{\rm had}) + p_{\rm T}({\rm t}_{\rm lep}))/H_{\rm T}$
Sum of electric charges of the two light-flavor jets from decay of t _{had} , multi- plied by lepton's charge

Input variables for the classification MVA. The variables are split into three groups: global variables, variables of the jet assignment under the tHq hypotheses, variables of the jet assignment under the tt hypothesis. In the descriptions, t_{had} stands for a hadronically decaying top quark.

Electric charge of the lepton

Pseudorapidity of the recoil jet

Number of b-tagged jets among the two jets from the Higgs boson decay

Transverse momentum of the Higgs boson

Transverse momentum of the recoil jet

 ΔR between the two light-flavor jets from the decay of t_{had}

Mass of thad

Number of b-tagged jets among the two light-flavor jets from the decay of t_{had}

Improvement when omitting single systematic uncertainties on the final combined limit with the MC-based approach and impact of adding single systematic uncertainties on the limit without any systematics. Values denoted with < 1 have a negligible impact compared

Sourco	Туре	impact as exclusive	improvement of final limit
Source		source on final limit [%]	after removal [%]
JES	shape	17	3
JER	shape	< 1	< 1
BTag light flavor	shape	13	< 1
BTag heavy flavor	shape	17	< 1
Pile up	normalization	< 1	< 1
Unclustered energy	shape	3	1
Lepton efficiency	normalization	5	< 1
Luminosity	normalization	10	< 1
Cross section (PDF)	normalization	8	< 1
Cross section (Scale)	normalization	9	< 1
MC Bin-by-Bin unc.	shape	< 1	< 1
Q^2 scale $(tHq + t\bar{t})$	shape	20	4
Matching	shape	2	2
Top p_T reweighting	shape	19	2
$t\bar{t}$ HF rates (b)	normalization	13	< 1
$t\bar{t}$ HF rates $(b\bar{b})$	normalization	15	< 1
$t\bar{t}$ HF rates ($c / c\bar{c}$)	normalization	13	1

to the significant figures listed in the table.

Improvement when omitting single systematic uncertainties on the final combined limit for the data-driven approach and impact of adding single systematic uncertainties on the limit without any systematics. Values denoted with j 1 have a negligible impact compared to the significant figures listed in the table. The BTag systematic is divided into its effect on the

data-driven tt sample (dd-tt) and the other backgrounds (MC), which are taken from MC.

Sourco	Туре	impact as exclusive	improvement of final limit
Source		source on final limit [%]	after removal [%]
JES	shape	< 1	< 1
JER	shape	< 1	< 1
BTag light flavor (MC)	shape	< 1	< 1
BTag heavy flavor (MC)	shape	6	3
Pile up	normalization	< 1	< 1
Unclustered energy	shape	< 1	< 1
Lepton efficiency	normalization	< 1	< 1
Luminosity	normalization	< 1	< 1
Cross section (PDF)	normalization	< 1	< 1
Cross section (Scale)	normalization	< 1	< 1
Q^2 scale (tHq)	shape	< 1	< 1
MC Bin-by-Bin unc.	shape	< 1	< 1
BTag light flavor (DD tt)	shape	4	< 1
BTag heavy flavor (DD $t\bar{t}$)	shape	< 1	< 1
tt contamination	shape	9	16
Method bias	shape	9	3
Scale	shape	< 1	< 1
$t\bar{t}$ HF rates (b)	shape	12	3
$t\bar{t}$ HF rates $(b\bar{b})$	shape	15	5
$t\bar{t}$ HF rates ($c / c\bar{c}$)	shape	< 1	< 1

ATLAS CONF-2014-043

Run I: Object and Event Selection

- Trigger / Objects
 - EF_g35_loose_g25_loose, p₁^γ >0.25/0.35*m_{γγ} GeV
 - p_t^e > 15 GeV(medium++), p_t^µ > 10 GeV(staco), p_tⁱ > 25 GeV
 - JVF|> 0.5, btag@80% (continuous MV1c)
- Hadronic:
 - □ $N_{jet} \ge 6 @ 25 GeV, N_{btag@80\%} \ge 2, N_{lep} = 0$
 - □ $N_{jet} \ge 5 @ 30 \text{ GeV}, N_{btag@70\%} \ge 2, N_{lep} = 0$
 - $\square \mathbf{N}_{jet} \ge \mathbf{6}, \, \mathbf{N}_{btag@60\%} \ge \mathbf{1}, \, \mathbf{N}_{lep} = \mathbf{0}$
 - Optimization:
 - Suppress non-Higgs processes
 - High purity of ttH w.r.t. non-ttH Higgs processes (ggF)
- Leptonic:
 - □ $N_{lep} \ge 1$, $M_{e\gamma}$ veto, $N_{btag@80\%} = 1$, MET > 20 GeV
 - □ $N_{lep} \ge 1$, $M_{e\gamma}$ veto, $N_{btag@80\%} \ge 2$
 - Optimization:
 - High #H signal efficiency

HSG8 Run 2 Kick-off

Table : Summary of systematic uncertainties on the final yield of events for 8 TeV data

	tīH	[%]	tHq	[%]	WtH	[%]	ggF [%]	WH [%]
	had.	lep.	had.	lep.	had.	lep.	had.	lep.
Luminosity					\pm 2.8			
Photons	± 5.6	± 5.5	± 5.6	± 5.5	± 5.6	± 5.5	± 5.6	± 5.5
Leptons	< 0.1	± 0.7	< 0.1	± 0.6	< 0.1	± 0.6	< 0.1	± 0.7
Jets and ∉ _T	± 7.4	± 0.7	± 16	±1.9	± 11	±2.1	±29	±10
Bkg. modeling	0.24 e	vt. 0.16 e	vt. applie	d on the	sum of all	Higgs bo	son productio	n processes
Theory ($\sigma \times BR$)	+7,	-6	+14,	-12	+14,	-12	+11, -11	+5.5, -5.4
MC Modeling	\pm 11	\pm 3.3	\pm 12	± 4.4	\pm 12	± 4.6	± 130	± 100

ATLAS CONF-2014-043

Process	σ [pb] at 7 TeV	σ [pb] at 8 TeV
tīH	$0.086^{+0.008}_{-0.011}$	$0.129^{+0.012}_{-0.016}$
$tHqb, \kappa_t = +1$	$0.0111\substack{+0.0009\\-0.0008}$	$0.0172^{+0.0012}_{-0.0011}$
$tHqb, \kappa_t = 0$	$0.040^{+0.003}_{-0.003}$	$0.059^{+0.004}_{-0.004}$
$tHqb, \kappa_t = -1$	$0.129\substack{+0.010\\-0.009}$	$0.197^{+0.014}_{-0.013}$
$WtH, \kappa_t = +1$	$0.0029^{+0.0007}_{-0.0006}$	$0.0047^{+0.0010}_{-0.0009}$
$WtH, \kappa_t = 0$	$0.0043^{+0.0011}_{-0.0008}$	$0.0073^{+0.0017}_{-0.0013}$
$WtH, \kappa_t = -1$	$0.016^{+0.004}_{-0.003}$	$0.027^{+0.006}_{-0.005}$
ggF	15.1 ± 1.6	19.3 ± 2.0
VBF	1.22 ± 0.03	1.58 ± 0.04
WH	0.579 ± 0.016	0.705 ± 0.018
ZH	0.335 ± 0.013	0.415 ± 0.017