Florencia Canelli On behalf of the ATLAS and CMS collaborations

University of Zürich TOP2014 – Cannes, France

Experimental Results on Top Exotic (non SUSY) from the LHC

Prepared with help from James Ferrando from ATLAS

Top quarks in BSM theories

 "Largest quantum correction to the Higgs boson mass involves a top quark loop, it is natural to suppose that BSM mechanisms involve top quarks"

- ATLAS:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsTopResults
- CMS:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Outline

- Resonances
- Dark matter
- Vector like quarks

Resonances decaying to 1 or 2 top quarks

Resonances with top quarks

- Extended gauge sector a feature of many BSM theories
 - SM-like W' and Z' appear for e.g. in Little Higgs models
 - Randall-Sundrum Kaluza-Klein excitations in extra dimension models
 - Technicolour, GUT, etc.
- Classic searches using top quarks:
 - W' and Z' (and gKK)

Search for W' boson decaying to top

- W' heavy partner of the SM W boson
- Constrains on W'→1v (currently M_{W'} > 3.4 TeV) do not apply to W' with purely right-handed couplings if the mass of the hyphothetical right-handed neutrino is larger than a few GeV
 - A search for W'>tb makes no assumptions on the mass of the righthanded neutrino
- Some models couple more strongly to fermions of the third generation than other generations
- W' signal
 - W'_L bosons couple like the SM W, we consider interference between schannel tb production via a W boson and via W'_L boson
 - W'_R can only decay leptonically if there is a right-handed neutrino v_R such that $M(v_R)+M(I) < M(W'_R)$, we assume $M(v_R) > M(W'_R)$

- Fit M(tb) after selecting one high p_T lepton, at least 2 jets, at least one btagged jet and to reduce backgrounds p_{Ttop}>85 GeV, p_T^{jet1,jet2}>140 GeV, 130<M_{top}<210 GeV
- Limits on coupling strengths provided for different M(W') hypothesis

[JHEP 05 (2014) 108]				
Model	Obs. exclusion	Exp. exclusion		
W'_L no int.	2.05 TeV	2.02 TeV		
W′ _L	1.84TeV	1.84 TeV		
W′ _R	2.13 TeV	2.12 TeV		

- Select one lepton and 2 or 3 jets with 2 b-tags
- Boosted Decision Tree trained with W'_R and W'_L (with and without interference) hypothesis
- About 10 variables used as input with M(tb) and p_{Ttop} producing the best signal and background separation

 Limits on couplings for different W' masses derived from W' cross section

Search for W' Boson (all jets)

1.99 TeV

W′_R

2.02 TeV

- Uses boosted techniques
 - Top candidate jet: p_T>450 GeV with CMS top-tagging algorithm
 - B-candidate jet: p_T>370 GeV using b-tagging and m<70 GeV

- Data derived multijet background estimate
- Reconstruction of M(tb) using these objects

Search for W' Boson (combination)

- Combination of single lepton and all hadronic channels
- Single lepton quoted up to 1.3 TeV, combined between 1.3 and 3.1 TeV
- Provides the current most stringent limits for W'_R

Search for W' Boson (all jets)

- Selection uses boosted techniques
 - Single anti-k_T R=1.0 trimmed jet with p_T
 >350 GeV (W' Top Tagger)
 - Small anti-k₇ R =0.4 b-tagged jet with p_T>35 GeV
 - Divided in 1 and 2 b-tags
- Background estimate fully from data
- W'_L no interference since 1% contamination from single top estimated

[arXiv:1408.0886]

Model	Obs. exclusion	Exp. exclusion
W'_L no int.	1.68 TeV	1.63 TeV
W′ _L	NATeV	NA TeV
W′ _R	1.76 TeV	1.85 TeV

Search for ttbar resonances

- Mainly introduced to alleviate the *hierarchy problem*
- Two theoretical benchmarks:
 - Narrow resonance(*) (topcolor, leptophobic (Z'))
 - $\Gamma_{Z'}/m_{Z'}=1.2\%$ (or 1%) with K factor 1.3 [EPJ C72 (2012) 2072]
 - Broad resonance(*) (Kaluza-Klein (KK) gluons from RS models with ED)
 - Γ_{qqKK}/m_{qKK}=15.3% (10-15%) with no K factor
 - [but also Γ_{z'}/m_{z'}=10% for CMS]

Search for enhancement in the invariant mass ttbar spectrum

(*) compare with detector resolution for mtt ~10%

Search for ttbar resonances (lepton + jets)

- Combine four channels electron, muon with resolved, boosted:
 - Resolved: Reconstruct tt with I+MET+4 small radius jets (R=0.4); Choose kinematically best combinatorics
 - Boosted:
 - Leptonic top = I +MET + nearby small radius jet (R=0.4)
 - Hadronic top = large radius jet (R=1.0) with high mass, hard substructure
 - Events that fail the boosted selection are examined using the resolved selection

Search for ttbar resonances (I + jets, all-had)

- Lepton+jets:
 - Resolved (M_{tt}<1 TeV): Reconstruct tt with l, MET, at least 4 jets. Events separated in e, mu, single and doble-b-tag. Reconstruct M_{tt} chosing the best combinatorics
 - Boosted (M_{tt}>1 TeV): Higher p_T lepton trigger plus higher leading jet p_T requirement. Reconstruct M_{tt} with one jet assigned to the leptonic side and at least one jet to the hadronic side
 - Not exclusive, limits are combined at 1TeV, found to be best point
- All-hadronic (M_{tt}> 1TeV):
 - **Boosted:** Top tagging and CAo.8 jets with pruning to identify substructure (3 or 4 jets)

Search for ttbar resonances (I + jets, all-had)

- Combine with resolved and boosted in I+jets channel with boosted hadronic channels for optimal sensitivity over M_{tt} range
- Combination of I+jets and all-hadronic channels improves the expected cross section limits at 2TeV by 25%

Search for ttbar resonances (summary)

Dark Matter or MET plus one or two top quarks

Dark matter with heavy quarks

- At LHC low DM masses (m_x<10 GeV) most sensitive, complementarity to direct searches
- If particles that mediate the interaction between dark matter and SM particles (M*) are too heavy to be produced, interactions can be described as contact operators in EFT with operators expressed in terms of M*
 - (D1) proportional to mass, better constraints from events where DM couples to *heavy quarks*
 - (C1) complex scalar (also proportional to m_q)
 - (D9) tensor couplings between WIMPS and quarks

Name	Initial state	Type	Operator
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$
D5	qq	vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\chiar q\gamma_\mu q$
D8	qq	axial-vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\gamma^5\chiar q\gamma_\mu\gamma^5 q$
D9	qq	tensor	$rac{1}{M_{\star}^2}ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$
D11	gg	scalar	$rac{1}{4M_\star^3}ar\chi\chilpha_s(G^a_{\mu u})^2$

Dark matter with top quark pairs

- Performed on single lepton and dilepton channels
 - Selections on scalar sums of leptons and jets, jet and MET opening angle, $M_{\rm T}$ and $M_{\rm T_2W}$
 - Set lower limits on the interaction scale M_{*} assuming D1 coupling
 - Lower bound on the validity of the EFT considered

Dark matter with top quark pairs

- Select at least one jet p_T> 100 GeV, MET > 100 GeV
- Divide sample in 4 regions:
 - SR1 and SR2 regions DM with 1 or 2 bquarks
 - SR₃ tt with all hadronic decay (>5 jets)
 - SR4 tt with semi leptonic decay (stop results are used)
- Use variables like 'Razor' variables (favors decay products of heavy particles), topness, asymetric transverse mass am_{T2}

lew

Dark matter with top quark pairs

- Presenting limits on effective mass scale M* for each operator and signal region
- Solid curves where where $m_{\chi\chi} < Q_{TR}$ (momentum transferred), e.g. $Q_{TR} < \sqrt{\frac{4\pi M_*^3}{m_q}}$

Dark matter with single top quarks

- Monotop: select large MET plus a top quark decaying in all-jets
 - MET>350 GeV, 3 jets (anti-k_T R=0.5) of which 1 b-tagged p_T(j₁), p_T(j₂) > 60 GeV and p_T(j₃) > 40 GeV veto additional jets with p_T(j) > 35 GeV m_{inv}^{3 jets} < 250 GeV, veto isolated leptons
- Interpreted within EFT where the DM are scalar or vector bosons

DM

DM

Dark matter with single top quarks

- Monotop: select one lepton, one b-tagged jet and large MET
- Search interpreted as
 - Resonant production of a +2/3 charged spin-o boson, S, decaying into a right-handed top quark and a neutral spin-1/2 fermion, f_{met}
 - Non-resonant production of a neutral spin-1 boson, v_{met}, in association with a righthanded top quark
- Divide in two signal regions
 - SRI (resonant model) m_T(I,MET) > 210 GeV and |Δφ(I,b)|<1.2
 - SRII (non-resonant) m_T(I,MET) > 250 GeV and and |Δφ(I,b)|<1.4

Resonant production

Non-Resonant production

Dark matter with single top quarks

Vector like quarks

Vector Like Quarks

- Proposed in extensions of SM to address the naturalness problems
 - Little Higgs, Composite Higgs, etc. *natural models*
- VLQ means left and right handed components transform identically under (SU₂)_L
- Predominantly VLQ decay to third generation
- Both charged and neutral decays can occur
 - Plenty signatures for searches: single or pair production of B' →Wt, Zb, Hb and/or T' →Wb,Zt,Ht

ATLAS and CMS style limit plot

ATLAS 2-BR plane for a given VLQ mass for many analyses
CMS 3-BR plane for a given analysis for many VLQ masses

Search for B' and T'

- ATLAS-CONF-2013-051:
 - Search for pair prod of B' →Wt, Zb, Hb and T' →Wb,Zt,Ht
 - Same-sign dilepton, 2 or more jets, at least one b-tag, large MET and H_T
- ATLAS-CONF-2014-036 (now arXiv:1409.5500):
 - Search for pair and single prod of B' \rightarrow Zb and T' \rightarrow Zt
 - Opposite-sign dilepton, no extra lepton, 2 or more central jets, 2 or more b-tagged jets. Discriminant m(Zb)
 - Opposite-sign dilepton, at least 1 extra lepton, 2 or more central jets, 1 or more b-tagged jets. Discriminant H_T(jets +leptons)

VLQ B' limits

Coverage for all B' decay modes
B' ruled out for any decay up to 350 GeV

Search for B' and T'

- ATLAS-CONF-2013-018:
 - Search for T'T'→HtHt, HtZt, WbHt with H→bb
 - One lepton, at least 6 jets, at least 2 b-tag, large MET.
 Discriminant H_T
- ATLAS-CONF-2013-060:
 - Search for pair prod of T' →Wb,Zt,Ht
 - One lepton, at least 4 jets, at least one b-tag, large MET. Discriminant m(reco)
 - (Veto greater than 6 jets to avoid overlap with ATLAS-CONF-2013-018)

VLQ T' limits

33

Limit set for all allowed decay modes of the T quark
T quark ruled out for any decay mode up to 550 GeV

F. Canelli, University of Zürich | TOP2104 | 34

Search for B' pairs (B'→bH)

- Consider decays with H→bb
- Only feasible because boosted techniques help reduce multi-jet background
- Rely on both "Higgs-Tagging" and b-tagging

Search for B' pairs (B'→tW)

- Also considers bZ (FCNC) and bH
- Select same sign dileptons and at least 4 jets; divide in categories of lepton flavor and S_T
 - S_T (sum p_T of jets, leptons and MET) > 200 GeV

Search for T' pairs (T'→tH, H→yy)

- Exploit the narrow resonance of H→γγ, by fitting the peak in Mγγ distribution and S_T > 1 TeV
 Analysis in hadronic and semileptonic channel
- Search is limited by statistics, yet a very powerful analysis for Run 2

Conclusions

- Top quark plays an important role in searches for physics BSM
- An exhaustive list of searches has been done using 8 TeV LHC dataset by ATLAS and CMS
- All channels have been used, many of them were already combined to achieve better precision
- Many reconstruction techniques have been developed or improved for these searches
- Looking forward to Run 2!