Perspectives on top quark physics at 13 TeV and HL-LHC

Pedro Silva (CERN) in collaboration with R. Schwienhorst (MSU) and on behalf of the ATLAS and CMS Collaboration

TOP 2014 - 29th Sep - 3rd Oct 2014, Cannes

Almada Negreiros, Começar, 1969

Introduction Looking ahead after the Higgs era

Higgs knows about its "force", but top quarks know about QCD, EWK and Higgs

Introduction Looking ahead after the Higgs era

Higgs knows about its "force", but top quarks know about QCD, EWK and Higgs

TOP 2014

Run I executive summary ...what did we learn about the top quark?

Cross sections

evidence for associated production with W or Z

arXiv:1406.7830, ATLAS-CONF-2014-038

approaching ttH vertex

...just some highlights, more in C. Schwanenberger's exp. summary

March 2014

180

175

170

165

Mass [in units of GeV/c²]

TOP 2014

Run I executive summary

...what didn't we learn yet about the top quark?

... again just some highlights, more in C. Schwanenberger's exp. summary

(*) cartoon taken from G. Perez @ TOPLHCWG May 2014

Run I executive summary ...what didn't we learn yet about the top quark?

... again just some highlights, more in C. Schwanenberger's exp. summary

(*) cartoon taken from G. Perez @ TOPLHCWG May 2014

Towards Run II and beyond Experimental prospects for Run II

luminosity ratio

Target energy : 6.5 TeV

- Physics prospects:
 - gg production dominates
 - 8 TeV sensitivity reached with ~ 2 fb⁻¹
 - large benefit for M_x > I TeV: O(10) gain
- LHC challenges: quench margins, tolerance to beam loss, intensity set-up beams, hardware pushed closer to maximum

Bunch spacing : 25 ns

- LHC challenges: limit pileup to 50, electron cloud, UFOs, long range collisions, higher β* (80-40 cm), higher beam current and intensity / injection
- Detector challenges:
 - keep trigger thresholds as loose as possible
 - calorimeters cope with high occupancy + energy flux
 - maintain high performance until O(300 fb⁻¹)

Towards Run II and beyond Experimental prospects for the HL-LHC 9/34

Fully exploit LHC potential at 14 TeV ► 2009

- Collect 10x more data than initial design
- $5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ leveled luminosity, **<PU>=140**
- → 3 fb⁻¹ per day \rightarrow <u>3 ab⁻¹ after 10 years</u>

Higgs factory

- couplings 2-10%, self couplings ~30%
- → Test $V_L V_L \rightarrow V_L V_L$ unitarity

Ultimate precision at the LHC

- Top Yukawa 7-10%
- exceed SM exp. unc. for Z/γ couplings
- probe FCNCs down to 10⁻²-10⁻⁴ %
- $\rightarrow \delta m_{top} \sim \Lambda_{QCD}$

Keep searching for new physics

- Characterize Run 2/3 discoveries ?
- Push the energy frontier ?
- Uncover deviations from SM or rare processes?

The HL-LHC offers the potential to fully explore discoveries made in Run II

Towards Run II and beyond Towards the HL-LHC: detector upgrade strategies

Consolidate detectors, address operational issues, prepare for high pileup

- Phase 0 complete muon coverage, improve muon trigger, new smaller radius beam pipes
 - CMS : Replace HCAL forward PMTs and outer HPD \rightarrow SiPM
 - ATLAS : Diamond beam monitor, additional pixel layer

Mantain / improve performance at high pileup

- Phase I CMS: new pixels, HCAL SiPMs, electronics, and L1-Trigger
 - ATLAS: L1 trigger improvement, fast track trigger at L2, new muon small wheels

Mantain / improve performance at extreme pileup : sustain rate + radiation doses

Phase II

2023-2024

2013-2014

- New inner detector, new calorimeter electronics, muon extension, trigger and DAQ upgrade
- CMS: track trigger, replace endcap calorimeters
 - ATLAS: replace inner tracker, new forward calorimeter

Physics challenges Facing the increase in pileup

• Main challenge: ability to tame pileup at different levels

- \rightarrow tighter trigger requirement for leptons will help sustain approximately the same p_{T} thresholds
- need more careful study of the isolation, in particular effect of out-of-time pileup
- main concern for top physics: jets

Jet rate increases due to diffuse superposition of pileup energy flow

Jet resolution degrades naturally due to local pileup fluctuations

P. Silva

Events/1.25 GeV

TOP 2014

In-time pileup mitigation techniques

• Jet vertex tagger (JVT)

- correct fraction of tracks associated to a jet and other PV for pileup dependency
- combine in a likelihood with jet p_{τ} fraction carried by tracks from PV

• Charged hadron subtraction (CHS)

- already pioneered at 8 TeV : removes tracks entering the fits of other PVs
- applying CHS reduces the rate of pileup jets from 20% to 5%

Physics challenges : jet and E_{τ}^{miss}

improved resolution on top of particle flow, in particular at high pileup

From topological clustering...

• When calorimeter granularity allows can use topological clustering to reduce noise and pileup

- Iterate clustering starting from seeds well above noise, e.g. ($E_{cell}/\sigma>4$)
- Cluster with high significance neighbours ($E_{cell}/\sigma>2$) and boundaries ($E_{cell}/\sigma>0$)
- σ provides particle (cluster) level pileup subtraction \rightarrow needs to be adjusted to pileup scenario

Physics challenges : jet and E_{τ}^{miss}

...to pileup per particle id

Constituent subtraction
 JHEP 1406 (2014)
 Use ghost particles within the jet area to subtract pileup energy

- Pileup per particle identification
 arXiv:1407.6013
 contrast collinear QCD structure with pileup
 - -> discriminating variable $\alpha_i = \log \sum_{j \in Ch, PV} \left(\frac{p_{T,j}}{\Delta R_{ij}}\right)^2 \Theta(R_0 \Delta R_{ij})$, if only calorimeter use $P_T / \Delta R$ or P_T as metric
 - assign weight per particle based on the cumulative χ^2 distribution

- Systematic removal of a subset of jet constituents
 - profit from substructure grooming algorithms

Physics challenges : jet and E_{τ}^{miss}

- complement with tracking or PUPPI-weights
- significant improvement on jet mass, stable against PU

- Tighten further the jet cone
 - minimize degradation on jet energy resolution

- decrease corrected response (~2% for R=0.3)
- tt events have the potential to be used to optimize the jet algorithm using W → qq'

- Pixels upgrade is mandatory to maintain performance at high pileup
 - Expected performances in tt events from full simulation including 13 TeV-like pileup scenario

P. Silva

TOP 2014

Physics challenges : inputs from theory Improvements in signal modelling

- **NLO+PS** is expected to improve our understanding of signal (and backgrounds taken from MC)
 - use techniques from CKKW/MLM and multi-scale improved fixed order NLO or "MINLO"
 - reduced dependency on choices of matrix-element to parton-shower matching and QCD scales
 - automatized prescription for re-weighting for PDFs and scale choice using the same LHE events
 - include non-resonant and resonant diagrams for production of top quarks

• Switching to **Pythia 8 and Herwig++ as hadronizers**

- better-defined interface to NLO+PS matrix element generators
- more accurate decay tables and more up to date UE tunes
- more colour-reconnection models available to test
- **NNLO** predictions are also available
 - waiting for differential distributions: charge asymmetry, top p_T, m_{tt}
 - top pairs and single top
 - large impact expected on many searches and precision measurements

17/34

TOP 2014

A new start

ATLAS and CMS are preparing intensively for Run 2 and the HL-LHC

- upgraded detectors with enlarged capabilities to face the increase in pileup
- new techniques for jet reconstruction and pileup subtraction and identification, flavour tagging
- testing new tools for signal modeling -

Top quark physics Re-visiting top quark pair production 19/34

- "First day" measurement: top quark pair production at a new center-of-mass energy
 - measurements can be furthermore optimized to measure the ratio between different pp energies
 - extending procedure to differential measurements (e.g. M_{tt}) will be a powerful tool
 - → strong constraints on NNLO PDFs, in particular large x gluons \rightarrow crucial for searches
 - with more data: explore gg/qq production, use associated W production as tag for qq production

σ(tt) can constrain new physics e.g. light stops if we improve on:

- <u>theory</u>: signal and single top modeling + PDF ~3.8% unc.
- <u>experiment</u>: luminosity ~1.9% unc. beam energy ~1.8% unc.

using uncertainties from ATLAS σ(tt) in the eµ channel arXiv:1406.5375

```
lepton isolation + JES/JER + b-tagging ~0.9% unc.
```


Top quark physics Re-visiting single top quark production34

Crucial to pursue t-, s-, tW-channels

- Need <u>further understanding of top production as whole</u>: resonant and non-resonant production
- window for FCNC, Higgs and dark matter
- Single top cross sections do not rise as fast as top pairs due to PDFs
 - → breaking the ~4% unc. barrier on $|V_{tb}| \rightarrow \text{improve on ~9% exp. } \sigma(t)$ unc. as $\frac{\Delta V_{tb}}{V_{tb}} = \frac{1}{2} \left(\frac{\Delta \sigma^{\text{meas}}}{\sigma^{\text{meas}}} \oplus \frac{\Delta \sigma^{\text{th}}}{\sigma^{\text{th}}} \right)$
 - expand on differential measurements → constrain more effectively PDFs from charge asymmetry
 - measure associated production e.g. t+Z (irreducible rare background for many searches)
 - m_t and polarization measurements in EWK-production-dominated (high-purity) region

21/34

Measure differential the production of top quarks

- pair and singly-produced
- crucial test of alternative signal models \rightarrow potential to reduce theory systematics, exp. biases
- a better understanding of the top p_{τ} in Run II will impact many precision measurements and searches
- improved precision has the potential to constrain further BSM contributions to top production

tWb vertex

Fully fixed in the SM, good description of data

W boson helicity fractions

 BSM extensions include right-handed + dipole terms

$$\Gamma^{ ext{tWb}}_{\mu} = -rac{g}{\sqrt{2}} \left\{ \gamma_{\mu} \left(V_L P_L + V_R P_R
ight) + rac{i\sigma_{\mu
u}q^{
u}}{\sqrt{2}m_W} \left(g_L P_L + g_R P_R
ight)
ight\}$$

measuring all, including phases, in reach of RunII

 Improving current limits will depend on our understanding of signal modelling, m_{top}, JES/R and MET in both tt and single top events

Neutral bosons (Z, y)

- Evidence for associated production in Run I
- Next : measure couplings
 - I0% uncertainty effectively probes BSM models
 - $\delta g_{
 m t\bar{t}Z} pprox 10\% \left(rac{1~{
 m TeV}}{\Lambda}
 ight)^2$

		a	<u> Xiv:1311.2028</u>
Collider	LHC		ILC/CLIC
CM Energy [TeV]	14	14	0.5
Luminosity [fb ⁻¹]	300	3000	500
SM Couplings			
photon, F_{1V}^{γ} (0.666)	0.042	0.014	0.002
Z boson, F_{1V}^Z (0.24)	0.50	0.17	0.003
Z boson, F_{1A}^{Z} (0.6)	0.058	-	0.005
Non-SM couplings			
photon, F_{1A}^{γ}	0.05	-	-
photon, F_{2V}^{γ}	0.037	0.025	0.003
photon, F_{24}^{γ}	0.017	0.011	0.007
Z boson, F_{2V}^Z	0.25	0.17	0.006
Z boson, ReF_{2A}^Z	0.35	0.25	0.008
Z boson, ImF^Z_{2A}	0.035	0.025	0.015

$$\Gamma_{\mu}^{ttX} = ie \left\{ -\gamma_{\mu} \left((F_{1V}^{X} + F_{2V}^{X}) + \gamma_{5} F_{1A}^{X} \right) + \frac{(q - \overline{q})_{\mu}}{2m_{t}} \left(F_{2V}^{X} - i\gamma_{5} F_{2A}^{X} + F_{2V}^{X} \right) \right\}$$

- BSM models may give rise to FCNC at the level of BR<10⁻⁴
 - via neutral bosons: Z, γ , gluons and Higgs : at the level of 10^{-17} - 10^{-12} in the SM
 - higher luminosity will definitely help to reach nearer BSM scenarios

 \bar{c}, \bar{u}

- BSM models may give rise to FCNC at the level of BR<10⁻⁴
 - \rightarrow would be at the level of 10⁻¹⁷-10⁻¹² in the SM
 - higher luminosity will definitely help to reach nearer BSM scenarios

Higher reach in mass than the LHC will ever produce directly

 \bar{c}, \bar{u}

 ℓ^+

l_

t

 Z^0

- By far the "strongest" of the Higgs couplings
 - → σ (ttH) = 623 fb at 14 TeV (ratio to 8 TeV : 4.8) → challenging to measure
 - complement golden bb final state with multileptons and γγ
 - NB: moderate excess observed in 8 TeV multilepton search:

crucial to follow up with Run II data

• **Projections** for y_t evolution **based on two scenarios**

I. saturated systematics

2. theory reduced by $\frac{1}{2}$, exp. scaling with integrated luminosity

λ or (g/2v)^{1/2}

TOP 2014

			19.7 f	b ⁻ ' (8 TeV) + 5.1 fb ⁻ ' (7 TeV)
			0	
ATLAS and CMS preliminary	_	_		-
VS = 7 IeV, L _{int} =35 pb - 2.2 fb		Fo		t
NNLO QCD				wZ
Combination			0 - 08% UL	
-●■▲ Data (F /F,/F_)				-
R L O			a o-1 SM Higgs	

• A global "top fit" would be desirable to understand the top in all its magnitude:

CMS 2011 (single muon) LHC SM measurements = BSM searches	
profit from all available measurements in the different channels : bot	h top-pairs and single top
test predictions: SM and BSM (eff. theory or benchmark scenarios)	
Run II will definitely provide enough data to accomplish this task	

The TOPLHCWG can play a crucial role in bringing exp. and th. together

Non-SM couplings			
photon, F_{1A}^{γ}	0.05	-	-
photon, F_{2V}^{γ}	0.037	0.025	0.003
photon, F_{2A}^{γ}	0.017	0.011	0.007
Z boson, F_{2V}^Z	0.25	0.17	0.006
Z boson, ReF_{2A}^Z	0.35	0.25	0.008
Z boson, ImF^Z_{2A}	0.035	0.025	0.015

Top quark physics Mass: quo vadis?

- The most fundamental crucial interesting ambiguous parameter of the standard model
- Most measurements rely on an intrinsic calibration to a LO/NLO MC definition
 - may assume that ambiguity can in principle be resolved up to $O(\Lambda_{OCD})$ see A. Hoang's talk
 - e.g. measure mass in MC, use observables calculated in well defined schemes, use short-range definition
 - from the experimental point of view Run 2 and HL-LHC have potential for more precise m_t

Measurements of radiation in tt

Diff. m, measurements

constrain in-situ main uncertainties

- Use flagship measurements @ the LHC to project roadmap towards HL-LHC
 - improved fitting techniques. dedicated signal modeling studies
 - standard methods expected to lead m_{top} measurements

expect $\sigma(m_t) \sim \Lambda_{QCD}$ at the end of HL-LHC!

to be accompanied with improvements from theory

Top quark physics From the mass to the width

29/34

• The width is **accurately predicted at NLO**

Γ_t=1.33 ± 0.01 GeV

Deviation signals <u>NP coupling with the top quark</u>

● Measured indirectly in Run I ►

- through a combination of R_{b} and $\sigma(t-ch)$ arXiv:1009.5686
- II% uncertainty is dominated by $\Delta\sigma$ (t-ch)

profit from more recent NNLO QCD calculations arXiv:1404.7116

Direct measurement from mass shape

- pioneered by CDF PRL III (2013)
- expect competitive results based on latest mass determinations at the LHC with σ(m,)<1 GeV
- But also: how important are **off-shell effects?**
 - measure inclusive WWbb production (e.g. JHEP06(2014)158)
 - differential distributions may shed light on the width

• Many exotic signatures will be worth exploring further at higher energy and int. luminosity

Top quark physics Probing EWSB naturalness I

Top dominates the loop contributions to the Higgs mass

- cancellations are a bit "un-natural" way in the SM
- "naturalness" would require relatively light stop/sbottoms ~ TeV
- would preferentially couple to top quarks

• Gluino-induced or direct stop production in "natural" scenarios is within the LHC reach

- in both cases strong production benefits from the increase in s^{1/2}
- increased integrated luminosity will allow to scan to higher mass scales
- but also to perform dedicated searches for the cases of compressed spectra

sensitivity driven by BR =0 and =1 lepton channels

Expect HL-LHC powerful for challenging models, but small gain in reach for M eluino

Discovery possible for $M_{\gamma} \sim 1.2$ TeV \rightarrow test EWKSB tuning to $\sim 1:10^2$

Top quark physics **Probing EWSB naturalness III**

Exotic top partners

Vector quarks may generate $t \rightarrow t + W/Z/h$

X → tt : benchmark for cascade decays

explore boosted reconstruction techniques

- While still learning many things on the top quark from the first LHC run
 - it's clear we need more data to be able to take the next step
- ATLAS and CMS are preparing intensively for Run 2 and the HL-LHC
 - upgraded detectors with enlarged capabilities to face the increase in pileup
 - new techniques for jet reconstruction and pileup subtraction and identification, flavour tagging
 - Eagerly looking for:
 - more precise cross section measurements including ratios, differential
 - global view of the couplings of the top quark
 - the ultimate top mass measurement from hadron colliders
 - the exploration of the naturalness concept, after the discovery of the Higgs:

the relevant parameter range for naturalness will be covered by the end of the HL-LHC era

The exploration of the new data is a <u>new start</u> for top physics:

will the top quark finally reveal its key for the world beyond the terascale?

Backup

CMS-PAS-TOP-14-003 ATLAS-CONF-2013-063 Search for FCNCs in single-top topologies

