

Search for ttH Production at the LHC

Mark Owen The University of Glasgow On behalf of the ATLAS & CMS Collaborations

Prepared with the help of Darren Puigh

Outline

- Motivation & Introduction
- ttH, H→bb
- $ttH, H \rightarrow VV / TT$
- ttH, $H \rightarrow \gamma \gamma$
- CMS Combined results
- Conclusions

Motivation

 In Standard Model - fermion masses are proportional to Higgsfermion Yukawa couplings. Need to test this prediction.

$$m_t \neq \frac{vy_t}{\sqrt{2}}$$

- Top quark is heavy ~ 173 GeV.
- Strong Yukawa coupling, yt~1?
- New physics?

University of Glasgow

ttH Production & Decay

- Largest branching ratio, 58%.
- Final state with multiple b-quarks challenging to reconstruct Higgs.
- Large background from ttbar + jets.
- Significant branching ratio, Br(H→WW) = 22%.
 Leptonic decays of W / Z bosons and tau decays can give distinct multi-lepton signatures, but difficult to reconstruct Higgs.
- Main background from ttbar+W/Z and nonprompt leptons.
 - Small branching ratio, 0.2%.
 - Higgs boson can be reconstructed as a narrow peak.
- Backgrounds from ttbar+photons and QCD multiphoton / jet final states.

ttH Production & Decay

- Largest branching ratio, 58%.
- Final state with multiple b-quarks challenging to reconstruct Higgs.
- Large background from ttbar + jets.
- Significant branching ratio, $Br(H \rightarrow WW) = 22\%$.
- Leptonic decays of W / Z bosons and tau decays
- can give distinct multi-lepton signatures, but difficult to reconstruct Higgs.
- V / Z Main background from ttbar+W/Z and nonprompt leptons.
 - Small branching ratio, 0.2%.
 - Higgs boson can be reconstructed as a narrow peak.
 - Backgrounds from ttbar+photons and QCD multiphoton / jet final states.

ttH Production & Decay

- Largest branching ratio, 58%.
- Final state with multiple b-quarks challenging to reconstruct Higgs.
- Large background from ttbar + jets.
- Significant branching ratio, Br(H→WW) = 22%.
 Leptonic decays of W / Z bosons and tau decays can give distinct multi-lepton signatures, but difficult to reconstruct Higgs.
- Main background from ttbar+W/Z and nonprompt leptons.
 - Small branching ratio, 0.2%.
 - Higgs boson can be reconstructed as a narrow peak.
- Backgrounds from ttbar+photons and QCD multiphoton / jet final states.

ttH Production & Decay

- Largest branching ratio, 58%.
- Final state with multiple b-quarks challenging to reconstruct Higgs.
- Large background from ttbar + jets.
- Significant branching ratio, Br(H→WW) = 22%.
 Leptonic decays of W / Z bosons and tau decays can give distinct multi-lepton signatures, but difficult to reconstruct Higgs.
- Main background from ttbar+W/Z and nonprompt leptons.
 - Small branching ratio, 0.2%.
 - Higgs boson can be reconstructed as a narrow peak.
- Backgrounds from ttbar+photons and QCD multiphoton / jet final states.

CMS also searches for $\tau_h \tau_h$, but will not discuss details today

ttH; H→bb

ATLAS: <u>ATLAS-CONF-2014-011</u> CMS: <u>arXiv:1408.1682</u>, <u>CMS-PAS-HIG-14-010</u>

Search for ttH

Mark Owen

- Background from ttbar+jets estimated using MC, corrected to match differential ttbar measurements.
- Classification is done using truth level information, small differences CMS / ATLAS:

Search for ttH

Jniversity

💐 of Glasgow

- Background from ttbar+jets estimated using MC, corrected to match differential ttbar measurements.
- Classification is done using truth level information, small differences CMS / ATLAS:

Search for ttH

Jniversity

🛫 of Glasgow

- Background from ttbar+jets estimated using MC, corrected to match differential ttbar measurements.
- Classification is done using truth level information, small differences CMS / ATLAS:

Jniversity

💐 of Glasgow

- Background from ttbar+jets estimated using MC, corrected to match differential ttbar measurements.
- Classification is done using truth level information, small differences CMS / ATLAS:

Mark Owen

CMS
$$t\bar{t} + b\bar{b}$$
 $t\bar{t} + b$ $t\bar{t} + c(\bar{c})$ $t\bar{t} + c(\bar{c}$

light

6

Jniversity

💐 of Glasgoŵ

Event Selection

- Events are split according to ttbar decay mode, lepton +jets or dilepton.
- Events are then further sub-divided into how many jets and b-jets are reconstructed in the events.
 - Signal peaks at high n(j) & n(b), but signal in lower bins due to jets out of acceptance and b-tag efficiency (~70% per b-jet).
 - Background fractions vary significantly with n(j) and n(b).
 - Lower n(j) and n(b) regions used to constrain backgrounds and systematic uncertainties.

Lepton+jets Channels

Search for ttH

8

Lepton+jets Channels

Dilepton Channels

Mark Owen

Search for ttH

University of Glasgow

Dilepton Channels

Mark Owen

University of Glasgow

tī + bb

Bkg. Unc.

tīt+cīc

tī + W.Z

Multivariate Analysis

 Use Multivariate analysis to separate signal from background -BDT for CMS, NN for ATLAS.

Example input variables:

• ATLAS uses only kinematic variables, CMS adds b-tagging variables.

Systematic Uncertainties

- All systematics included in fit as nuisance parameters can change shape and normalization of background / signal.
- Important experimental systematic uncertainties with ranking of impact on the uncertainty of final ATLAS result:
 - Calibration of b-tagging:
 - Efficiency to select b-jets, mis-tag rate for c-jets, mis-tag rate for light jets.
 - I Ith & I5th
 I0th & I2th
 2nd & 7th
 - JES _{I3th}
- Most important systematics are on ttbar background model next slide.

ttbar Model Uncertainties

	ATLAS	CMS
Baseline Model	Powheg+Pythia, normalized to NNLO	Madgraph+Pythia, normalized to NNLO
Reweighting to differential cross section	top p_T and ttbar p_T	top p⊤
Model uncertainty	Vary reweighting (9 comps.) Pythia vs Herwig	Vary reweighting Vary scales in MC
Additional heavy flavour modelling uncertainty	On/off reweighting, uncorrelated with ttbar + light jets Vary scales in Madgraph+Pythia Compare Madgraph+Pythia to Powheg+Pythia	Scale variations are uncorrelated between ttbar + light / c / b / bb
Additional heavy flavour normalization uncertainty	$t\overline{t} + b(\overline{b}) : 50\%$ $t\overline{t} + c(\overline{c}) : 50\%$	$tar{t} + bar{b} : 50\%$ $tar{t} + b : 50\%$ $tar{t} + c(ar{c}) : 50\%$

Mark Owen

ttbar Model Uncertainties

	ATLAS	CMS
Baseline Model	Powheg+Pythia, normalized to NNLO ^{8th}	Madgraph+Pythia, normalized to NNLO
Reweighting to differential cross section	top p_T and ttbar p_T	top p⊤
Model uncertainty	Vary reweighting (9 comps.) ^{4th} Pythia vs Herwig	Vary reweighting Vary scales in MC
Additional heavy flavour modelling uncertainty	On/off reweighting, uncorrelated with ttbar + light jets ^{3rd & 9th} Vary scales in Madgraph+Pythia Compare Madgraph+Pythia to Powheg+Pythia ^{6th}	Scale variations are uncorrelated between ttbar + light / c / b / bb
Additional heavy flavour normalization uncertainty	$t\overline{t} + b(\overline{b}): 50\%^{lst}$ $t\overline{t} + c(\overline{c}): 50\%^{5th}$	$tar{t} + bar{b} : 50\%$ $tar{t} + b : 50\%$ $tar{t} + c(ar{c}) : 50\%$

ttbar Model Uncertainties

I	VIA VERITAS VITA	U1 of	nive Gla	ersi sgc	ity W

	ATLAS	CMS					
Baseline Model	Powheg+Pythia, normalized to NNLO ^{8th}	Madgraph+Pythia, normalized to NNLO					
Improved ttbar+jets model crucial to improve analysis. Use NLO@multileg generators for Run 2? Continue programme of differential cross section measurements.							
riodel uncertainty	Pythia vs Herwig	Vary scales in MC					
Additional heavy flavour modelling uncertainty	On/off reweighting, uncorrelated With ttbar + light jets Vary scales in Madgraph+Pythia Compare Madgraph+Pythia to Powheg+Pythia	Scale variations are uncorrelated between ttbar + light / c / b / bb					
Additional heavy flavour normalization uncertainty	$tar{t}+b(ar{b}):50\%^{ m lst}$ $tar{t}+c(ar{c}):50\%^{ m 5th}$	$egin{aligned} tar{t} + bar{b} : 50\% \ tar{t} + b : 50\% \ tar{t} + c(ar{c}) : 50\% \end{aligned}$					

Mark Owen

Final Discriminants & Fit

- Both experiments make combined fits to all channels.
- Low n(j), n(b) regions allow to constrain systematics.

Mark Owen

Search for ttH

Results

Neither experiment observes a significant excess. Limits and best fit values are reported relative to the SM expectation.

Expected limit (no ttH): 3.5 Expected limit (SM ttH): 5.0 **Observed limit: 4.1**

Fitted $\sigma/\sigma_{SM} = 2.9 \pm 2.3$

Fitted $\sigma/\sigma_{SM} = 0.7 \pm 1.9$

See Slava's talk for ME introduction

CMS Matrix Element

- Alternate analysis from CMS use matrix elements for ttH and ttbar+bbbar to calculate weights w_S and w_B.
- Add b-tagging information (\pounds) to help separate ttbar+jets:

 Events additionally categorized based on n(jets) and b-tagging, and whether a dijet pair is close to m(W).

CMS Matrix Element

• Simultaneous fit to the discriminant in all the channels. No significant excess:

Improvement over BDT analysis of 17% in expected limit.
 Demonstrates there is still potential to improve sensitivity!

ttH; $H \rightarrow \gamma \gamma$

ATLAS: <u>arXiv:1409.3122</u> New! CMS: <u>arXiv:1408.1682</u>

Selection Criteria

- Strategy select two photons and apply loose requirements on jets to maximise signal acceptance.
- Two categories:
 - Hadronic: >= 4 jets 1 b-tag (CMS), >= 5(6) jets 2(1) b-tag (ATLAS)
 - Leptonic: >= 2 jets 1 b-tag (CMS), >= 1 jet 1 b-tag (ATLAS)

Category	N_H	ggF	VBF	WH	ZH	tīH	tHqb	WtH (%)
7 TeV leptonic selection	0.10	0.6	0.1	14.9	4.0	72.6	5.3	2.5
7 TeV hadronic selection	0.07	10.5	1.3	1.3	1.4	80.9	2.6	1.9
8 TeV leptonic selection	0.58	1.0	0.2	8.1	2.3	80.3	5.6	2.6
8 TeV hadronic selection	0.49	7.3	1.0	0.7	1.3	84.2	3.4	2.1

	7 TeV	8 TeV		
	All decays	Hadronic channel	Leptonic channel	Slie
tīH	0.21	0.51	0.45	
$gg \rightarrow H$	0.01	0.02	0	C(
VBF H	0	0	0	
WH/ZH	0.01	0.01	0.01	

lightly less ggH and VH contributions in CMS selections

Mark Owen

Background Estimate

- Background estimate follows main diphoton analysis smooth function for background & peak for signal.
 - ATLAS uses exponential function, CMS fit can use either exponential, power-law, polynomial or Laurent series determined when fitting to the data.

Signal Region

Mark Owen

Results

A few candidate events, but not statistically significant.
 Best fit consistent with SM.

Expected limit (no ttH): 4.7 Expected limit (SM ttH): 5.7 Observed limit: 7.4

Fitted signal $\sigma/\sigma_{SM} = 1.4^{+2.2}$ -1.4 Fitted signal $\sigma/\sigma_{SM} = 2.7^{+2.6}$ -1.8

Interpretation in terms of top Yukawa coupling - Christian's talk after lunch

ttH; H→multileptons

ttH multi-lepton

- Higgs decay into WW, ZZ and TT can produce signatures with multiple leptons in the final state.
- The following categories are used to search for the signal:
 - Same-sign charge di-lepton plus 2 jet events.
 - Tri-lepton plus 2 jet events.
 - 4-lepton plus 2 jet events.

- Multivariate BDT lepton ID is used, tight working point for SS & 3 leptons, loose for 4 lepton.
- Events must have either 2 loose b-tags (85%) or 1 medium btag (70%).
- Selection cuts on MET and m(II) used to remove Z+jets events.

Background Estimate

- Rare SM process:
 - tt+V estimated with MC + NLO cross-sections. Crosschecked with 3 lepton events, with two leptons near m(Z) agreement with prediction (35% precision).
 - Diboson normalized using control region with no b-tagged jets.
- Non-prompt leptons:
 - Measure probability for non-prompt leptons to pass the lepton ID. Then weight events with at least one lepton failing the lepton ID to estimate non-prompt background.
- Charge mis-measurement estimated using Z data events.

Event Yields

	ee	еµ	μμ	3ℓ	4ℓ
$t\bar{t}H, H \rightarrow WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
$t\bar{t}H, H \rightarrow ZZ$		0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
$t\bar{t}H, H \rightarrow \tau\tau$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
tŦW	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	
$t\bar{t}Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
tŦWW	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
$t\bar{t}\gamma$	1.3 ± 0.3	1.9 ± 0.5		2.6 ± 0.6	
WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	
ZZ		0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
Charge misidentified	1.8 ± 0.5	2.3 ± 0.7			
All signals	1.4 ± 0.2	4.3 ± 0.6	3.1 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
Data	19	51	41	68	1

- Largest background from non-prompt events.
- Excess of events seen in µµ channel.

Event Yields

	ee	еµ	μμ	3ℓ	4ℓ
$t\bar{t}H, H \rightarrow WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
$t\bar{t}H, H \rightarrow ZZ$		0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
$t\bar{t}H, H \rightarrow \tau\tau$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
tŦW	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	
$t\bar{t}Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
tŦWW	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
$t\bar{t}\gamma$	1.3 ± 0.3	1.9 ± 0.5		2.6 ± 0.6	
WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	
ZZ		0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
Charge misidentified	1.8 ± 0.5	2.3 ± 0.7		_	
All signals	1.4 ± 0.2	4.3 ± 0.6	31 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
Data	19	51	41	68	1

- Largest background from non-prompt events.
- Excess of events seen in µµ channel.

Signal Extraction

- Signal extracted by fitting to final discriminating variable:
 - 2 & 3 lepton: BDT exploiting kinematic differences between signal and background, categorised by sum of charge.
 - 4 lepton: N(jets).

Results

• Fitted signal and limits relative to Standard Model:

ttH channel	Best-fit μ	95% CL upper limits on $\mu = \sigma / \sigma_{SM}$ ($m_{H} = 125.6 \text{GeV}$)				
				E	xpected	
	Observed	Observed	Median signal-injected	Median	68% CL range	95% CL range
$\gamma\gamma$	$+2.7^{+2.6}_{-1.8}$	7.4	5.7	4.7	[3.1, 7.6]	[2.2, 11.7]
bb	$+0.7^{+1.9}_{-1.9}$	4.1	5.0	3.5	[2.5, 5.0]	[1.9, 6.7]
$ au_{ m h} au_{ m h}$	$-1.3\substack{+6.3\\-5.5}$	13.0	16.2	14.2	[9.5, 21.7]	[6.9, 32.5]
41	$-4.7\substack{+5.0\-1.3}$	6.8	11.9	8.8	[5.7, 14.3]	[4.0, 22.5]
31	$+3.1^{+2.4}_{-2.0}$	7.5	5.0	4.1	[2.8, 6.3]	[2.0, 9.5]
Same-sign 21	$+5.3^{+2.1}_{-1.8}$	9.0	3.6	3.4	[2.3, 5.0]	[1.7, 7.2]

• Fitted signal largest for di-muon events (μ =8.5^{+3.3}-2.7).

• Compatibility between all 5 channels is 16%.

CMS ttH Combination

ttH Combination

- CMS combines the bb BDT, multilepton, τ_hτ_h and γγ analyses to maximise sensitivity by making combined fit to all final discriminants.
- Assume SM Higgs branching ratios, so free parameter is the ttH signal strength.
- Systematic uncertainties are included as nuisance parameters and are correlated across the channels where appropriate.

ttH Combination

- Result corresponds to 3.5 standard deviation excess over background only, 2.1 standard deviation excess over SM.
- Consistency of individual channels with a single signal cross section is 29%.

Extracted limits, plus (weak) dependence on Higgs mass:

• Combination significantly improves sensitivity with respect to individual analyses.

Conclusions

- ttH process provides possibility for direct extraction of top quark Yukawa coupling.
- Rich final states rely on full capability of the detectors and sophisticated analysis techniques.
- Analyses exploiting bb, VV, TT and YY decay modes.
- Some excess seen in CMS multi-lepton analysis, no significant excess in bb or γγ channels.
- Higher energy of LHC from 2015 increases ttH crosssection faster than backgrounds.
- Looking forward to interesting results in the future!

Backup

ttH bb Selection

• Comparison of selection criteria for I+jets:

Selection	ATLAS	CMS
Electrons	_{PT} > 25 GeV, η <2.47, excluding 1.37 < η < 1.52	pτ > 30 GeV, η <2.5, excluding 1.44 < η < 1.57
Muons	p⊤ > 25 GeV, η <2.5	p⊤ > 25 GeV, η <2.1
Jets	pτ > 25 GeV, η <2.5	pτ > 30 GeV, η <2.4 3 leading jets pτ > 40 GeV

ttH bb Selection

	5 jets,	\geq 6 jets,	\geq 6 jets,
	> 4 <i>b</i> -tags	3 h-tags	$\geq 4 b$ -tags
tīH (125)	$5.8 \pm 0.7 \pm 0.6$	$39 \pm 3 \pm 4$	$16 \pm 2 \pm 2$
<i>tī</i> + light	67 ± 16	2200 ± 600	67 ± 20
$t\bar{t} + c\bar{c}$	47 ± 25	800 ± 400	80 ± 40
$t\bar{t} + b\bar{b}$	110 ± 60	900 ± 500	240 ± 130
$t\bar{t} + V$	3.1 ± 1.0	43 ± 14	8.4 ± 2.8
non-tī	26 ± 5	250 ± 50	22 ± 5
Total	260 ± 70	4200 ± 1100	430 ± 160
Data	283	4671	516

	\geq 6 jets +	4 jets +	5 jets +	\geq 6 jets +
	3 b-tags	4 b-tags	\geq 4 b-tags	\geq 4 b-tags
tt H(125.6 GeV)	18.9 ± 1.5	1.5 ± 0.2 (4.4 ± 0.4	6.7 ± 0.6
t t +lf	1076 ± 74	48.4 ± 10.0	54 ± 12	44 ± 11
t ī +b	289 ± 87	20.0 ± 5.5	28.6 ± 8.0	33 ± 10
$t\bar{t} + b\bar{b}$	232 ± 49	15.8 ± 3.6	45.2 ± 9.7	86 ± 18
$t\bar{t} + c\bar{c}$	$\textbf{720} \pm 110$	29.7 ± 5.6	55 ± 11	81 ± 13
tŧ+W/Z	24.7 ± 3.3	1.0 ± 0.2	2.1 ± 0.4	4.7 ± 0.8
Single t	47.7 ± 6.7	2.8 ± 1.4	7.5 ± 3.8	6.7 ± 2.6
W/Z+jets	7.7 ± 8.8	1.1 ± 1.2	0.9 ± 1.0	0.3 ± 0.8
Diboson	1.0 ± 0.4	0.2 ± 0.2	0.1 ± 0.1	0.2 ± 0.1
Total bkg	2394 ± 65	119.0 ± 8.2	193.4 ± 10.0	256 ± 16
Data	2426	122	219	260

Mark Owen

Search for ttH

University of Glasgow

ttH bb Systematics

 ATLAS ranking of systematic uncertainties by impact on µ:

ttH bb Fit

Example of pre and post-fit uncertainties in I+jets:

ttH bb Results

• ATLAS breakdown by channel:

ttH bb ME

• Definition of b-tagging discriminant for 6-jet events:

 $\mathcal{L}_{bbbb}(\xi_{1},\ldots,\xi_{6}) \equiv \sum_{\{i_{1},\ldots,i_{6}\}} f_{b}(\xi_{i_{1}}) \cdot f_{b}(\xi_{i_{2}}) \cdot f_{b}(\xi_{i_{3}}) \cdot f_{b}(\xi_{i_{4}}) \cdot f_{u}(\xi_{i_{5}}) \cdot f_{u}(\xi_{i_{6}})$

- $f_b(\xi) = CSV$ probability density function for heavy flavour jets.
- $f_u(\xi) = CSV$ probability density function for light flavour jets.
- $\xi_i = CSV$ output of ith jet.
- Sum runs over all possible ways of labelling 4 of the 6 jets as bjets.

Multilepton Selection

• Selection to reduce Z+jets, veto dilepton pairs near m_z and use:

 $L_D = 0.6 E_{\rm T}^{\rm miss} + 0.4 H_{\rm T}^{\rm miss}$

Uses all objects in event Uses selected objects in event

- Lepton pT requirements:
 - SS: 2 leptons, pT > 20 GeV.
 - 3 / 4-lepton: Two leading leptons pT > 20 / 10 GeV. Remaining leptons pT > 7 (e), 5 (µ) GeV.

CMS Combination

• Relax requirement of SM branching ratios - add two scale factors for couplings between Higgs and bosons (κ_V) /

Summary of HIG-13-020 result and cross-checks

The result

- The results in the different channels are fairly close to the SM Higgs predictions except the $\mu^{\pm}\mu^{\pm}$ final state, where an excess is observed
 - The results in the five final states are consistent with a common signal strength at the 16% level.
 - -The μ from the combined fit is consistent with the SM Higgs prediction (μ = 1) at the 3% level (1.9 σ)

Dimuon final state

 Excess of events observed, in the signal-like part of the BDT discriminator (trained to separate ttH from the reducible background, on the basis of kinematic variables, not using lepton id variables)

Process	Expected ± syst.	CMS Preliminary, $\mu^{\pm}\mu^{\pm}$ channel $\sqrt{s} = 8$ TeV, L = 19.6 fb ⁻¹ 25 $Data$ $-ttH$
ttH	2.7 ± 0.4	$\begin{array}{c c} & & & \\ &$
ttW	8.2 ± 1.4	15
ttZ/γ*	2.5 ± 0.5	
WZ	0.8 ± 0.9	
Others	1.4 ± 0.1	
Reducible	10.8 ± 4.8	
Data	41	-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 BDT output

Event kinematics (leptons)

 The kinematic of the leptons in the events does not show anomalies and is compatible with that of signal or ttV events

Event kinematics (jets & E_T^{miss})

- Jets and E_T^{miss} are more compatible with signal or ttV.
- The multiplicity of b-tags is also signal-like, while the reducible background has more often only 1 b-tag since the other b-jet is misidentified as a lepton.

Leptons

- The events in excess are characterized by having both leptons very well isolated.
- Scrutiny of the events also confirms that both leptons are well reconstructed in the tracker and muon system, and that their charge is correctly assigned.

Lepton ID checks: looser MVA

- The analysis was also repeated using a looser working point of the lepton MVA:
 - The excess is visible only when both leptons pass the tight MVA WP.
 - The rest of the sample is well described by the background model

Lepton ID checks: cut-based

- As a cross-check, the analysis was repeated with a cut-based muon selection, instead of the lepton MVA.
- The result with the cut-based selection is compatible with the nominal one, but the sensitivity is worse.

Signal extraction check

- The signal extraction is repeated using just the multiplicity of hadronic jets as discriminating variable instead of the kinematic BDT.
- The result is compatible with the nominal one, but the sensitivity is worse (as expected)

Irreducible background check

- A more general fit is performed:
 - leaving unconstrained the yields of ttW, ttZ, and reducible background (for fake e, μ separately)
 - including additional control regions in the fit: trilepton events with one Z candidate (mostly ttZ), and dilepton events with 3 jets (ttW & red. bkg).
- Results compatible with the nominal ones (but ~20% worse sensitivity).
- All backgrounds yields remain within 1σ from their input value: no indication of issues with ttW & ttZ

```
\mu(\text{ttH}) = 2.8 + 1.8 /_{-1.7}

\mu(\text{ttW}) = 1.4 + 0.6 /_{-0.5}

\mu(\text{ttZ}) = 1.1 + 0.4 /_{-0.3}
```

Results for ttH and ttW are correlated, all the others are well resolved.

Charge asymmetry

- Observed 21 μ⁺μ⁺ events and 20 μ⁻μ⁻ events,
 i.e. N(++)/N(tot) = 0.51 ± 0.09
- This is compatible with the expectations for SM Higgs + background, N(++)/N(tot) = 0.55
- Within 1σ the excess events are compatible with any charge asymmetry between zero and the one of ttW, N(++)/N(tot) = 0.69
- Note that in the signal extraction in the 2ℓ and 3ℓ final state the events are categorized by charge, to discriminate ttW from ttH.

Other hypotheses

- tt+bb (or tt+cc) with b/c $\rightarrow \mu$:
 - Excess should be even more visible with the looser lepton MVA working point, and it's not.
- tt $\rightarrow \mu$ + jets plus a muon from pile-up, or tt $\rightarrow \mu$ + jets plus a cosmic ray muon:
 - –given the observed d_{xy} , d_z distributions the estimated yields are by far too small compared to the excess.
- in general, SM backgrounds producing μ[±]μ[±] should also produce e[±]μ[±] (and any tt+X, X→μ should also contribute to the 3ℓ final states)

Conclusions

- Several studies have been performed to investigate the excess in the $\mu^{\pm}\mu^{\pm}$ final state
 - no anomalies seen in the properties of the selected events
 - no indication of any issue in the lepton MVA ID and in the reducible background estimation
 - no evidence for unaccounted backgrounds
- More in general, for this analysis:
 - compatible results obtained in cross-check without using multivariate methods for lepton IDs or signal extraction
 - —ttW and ttZ yields also fitted as cross-check, and found in good agreement with the theoretical predictions (i.e. no indication of problems there, nor in the signal efficiencies)