

GEFÖRDERT VOM





# Standard Reconstruction of the Top-Quark Mass at the LHC

**Eike Schlieckau** (Universität Hamburg) on behalf of the ATLAS and CMS Collaborations prepared with the help of Kevin Kröninger (TU Dortmund)

September 30<sup>th</sup> 2014



# **Standard Reconstruction**

- Reconstruct invariant mass distributions from final state objects:
  - Leptons, jets, and missing transverse momentum
- Measured mass corresponds to definition used in MC
- All presented measurements on m<sub>t</sub><sup>MC</sup>
  - Relation between theoretical well defined top-quark mass and m<sub>t</sub><sup>MC</sup> to be determined
  - See talk by Andre Hoang (tomorrow 10am)
- For alternative mass measurements:
  - See talk by Stefanie Adomeit (today 2pm)

## **Measurement Method**

- Build estimator for m<sub>t</sub> (e.g. inv. mass of decay products)
- Parametrize estimator as function of m<sup>MC</sup><sub>t</sub>
   (and possible other parameters)
- Possible per event combination of multiple estimators
- Ideogram method, CMS all-jets and I+jets
- Template method, all other measurements
- Perform maximum likelihood fit to data

3



Eike Schlieckau - Universität Hamburg

#### Datasets

- 7 TeV analyses based on 3.5 5.0 fb<sup>-1</sup> from 2011
- ▶ 8 TeV analyses based on 18.2 19.7 fb<sup>-1</sup> from 2012
- Produced number of top-quark pair events:
  - 2011: 800k, 2012: 5M, each number per experiment
- Cornerstones of measurements are understanding and minimizing impact of systematic uncertainties
  - See talks by:
    - Maria Costa (today 2:30pm, experimental uncertainties)
    - Markus Seidel (today 3:45pm, theoretical uncertainties)

# **Overview of Measurements**

- Alljets channel:
  - ATLAS @ 7 TeV
  - CMS @ 7 & 8 TeV
- Lepton+Jets channel:
  - ATLAS @ 7 TeV
  - CMS @ 7 & 8 TeV
- Dilepton channel:
  - ATLAS @ 7 TeV
  - CMS @ 7 & 8 TeV
- No measurements in final states with τ

| N decast             | $e^+\nu_e$ | $\mu^+ u_\mu$  | $\tau^+ \nu_{\tau}$ | ud           | cs     |
|----------------------|------------|----------------|---------------------|--------------|--------|
| $e^- \bar{\nu}_e$    | . A        | ofolo          |                     | leptor       | ı+jets |
| $\mu^- \bar{ u}_\mu$ | biles,     | .,             |                     | $(2 \times $ | 7.3%)  |
| $	au^- ar{ u}_	au$   |            |                |                     |              |        |
| ūd                   | (+jets     | 7.3%)          |                     | ,<br>X       | et alo |
| <del>c</del> s       | lepton     | $(2 \times 7)$ |                     | SIL          | \$3.   |

# **All-Jets Channel**

- Largest branching ratio (46%)
- > 2 bottom quarks and 4 lighter quarks in the final state
  - Require 6 jets with 2 b tags (as clean as possible)
- Largest and worst predictable background (multijets)
  - Fully data-driven background prediction needed
- Background reduction with help of event topology
  - Kinematic Fit

Eike Schlieckau - Universität Hamburg September 30th 2014

W

- Selected objects:
  - 4 untagged jets
  - 2 b-tagged jets

 $\bar{q}'$ 

b

 $\boldsymbol{q}$ 





Eike Schlieckau - Universität Hamburg September 30th 2014



Eike Schlieckau - Universität Hamburg





#### Kinematic fit for jet-parton assignment arXiv:1409.0832 Submitted to: EPJC

All-Jets Top-Quark Mass @ ATLAS 7 TeV

- Background: ABCD method
- Reduce JES uncertainty:
  - $R_{3/2} = m_{jjj} / m_{jj}$

| _     | Source             | Unc. [GeV] |
|-------|--------------------|------------|
| bJES: | JES+PU             | 0.52       |
| 0.62  | bJES+Had           | 0.80       |
| 0.50  | Detector modelling | 0.17       |
|       | Signal modelling   | 0.51       |
|       | Background         | 0.35       |
|       | Method             | 0.42       |
|       | Syst.              | 1.22       |
|       | Stat.              | 1.40       |
|       | Total              | 1.86       |



Eike Schlieckau - Universität Hamburg Septe

### All-Jets Top-Quark Mass @ CMS 7 TeV

- Kinematic fit
- Background: event mixing
- Tighter selection than ATLAS ගී
  - Less events
  - Narrower peak

| Source             | Unc. [GeV] |
|--------------------|------------|
| JES+PU             | 0.97       |
| bJES+Had           | 0.49       |
| Detector modelling | 0.29       |
| Signal modelling   | 0.46       |
| Background         | 0.13       |
| Method             | 0.13       |
| Syst.              | 1.23       |
| Stat.              | 0.69       |
| Total              | 1.41       |



Eike Schlieckau - Universität Hamburg Se

# All-Jets Top-Quark Mass @ CMS 8 TeV

- Improved reconstruction
- Switch to 2D fit with JES scale factor (JSF)
- Fit signal and correct permutation fractions

| JES+PU: | Source                      | Unc. [GeV] |
|---------|-----------------------------|------------|
|         | JES+PU+JSF                  | 0.48       |
| 0.24    | bJES+Had                    | 0.39       |
|         | Detector modelling          | 0.21       |
|         | Signal modelling            | 0.52       |
|         | Background                  | 0.22       |
|         | Method                      | 0.06       |
|         | Syst.                       | 0.86       |
|         | Stat. (m <sub>t</sub> only) | 0.27       |
|         | Total                       | 0.90       |



Eike Schlieckau - Universität Hamburg

September 30th 2014

# Lepton+Jets Channel

- $\blacktriangleright$  Moderate branching ratio (29% for e /  $\mu$  final states)
- 2 bottom and lighter quarks, 1 charged lepton and an undetectable neutrino in the final state
  - $^\circ\,$  Require 1 isolated e or  $\mu$  and 4 jets with 1-2 b tags
- Moderate and well predictable backgrounds (W+jets, t)
- In-situ measuring additional quantities to reduce dominant systematics
  - JES scale factor (JSF) (used by CMS and ATLAS)
  - Bottom JES scale factor (bJSF) (used by ATLAS only)



#### Simultaneous Extraction: m<sub>t</sub>, JSF, bJSF

- Reconstructed top-quark mass has strong dependence on jet energy scale of bottom and lighter jets
  - Find quantities to in-situ measure both energy scale



Eike Schlieckau - Universität Hamburg

### Simultaneous Extraction: m<sub>t</sub>, JSF, bJSF

- Reconstructed top-quark mass has strong dependence on jet energy scale of bottom and lighter jets
  - Find quantities to in-situ measure both energy scale
  - Reconstructed mass of W boson (m<sub>w</sub><sup>reco</sup>) to constrain light jets



Eike Schlieckau - Universität Hamburg

### Simultaneous Extraction: m<sub>t</sub>, JSF, bJSF

- Reconstructed top-quark mass has strong dependence on jet energy scale of bottom and lighter jets
  - Find quantities to in-situ measure both energy scale
  - Reconstructed mass of W boson (m<sub>w</sub><sup>reco</sup>) to constrain light jets
  - Ratio of p<sub>T</sub><sup>b-tag</sup> over p<sub>T</sub><sup>untagged</sup> (R<sub>lb</sub><sup>reco</sup>) to constrain bottom jets



#### I+Jets Top-Quark Mass @ ATLAS 7 TeV

- Changes from  $2D \rightarrow 3D$  result
  - Reduced bJES & hadr. uncertainties
    - 1.59 GeV → 0.73 GeV
  - Increased b-tagging unc.
    - 0.17 GeV  $\rightarrow$  0.81 GeV

| S+PU:       |                             |            |
|-------------|-----------------------------|------------|
| 0.79        | Source                      | Unc. [GeV] |
| 0.27        | JES+PU+JSF                  | 0.83       |
| bJES:       | bJES+Had+bJSF               | 0.73       |
| 0.08        | Detector modelling          | 0.84       |
| Had: $0.27$ | Signal modelling            | 0.62       |
| bJSF:       | Background                  | 0.10       |
| 0.67        | Method                      | 0.13       |
|             | Syst.                       | 1.53       |
|             | Stat. (m <sub>t</sub> only) | 0.23       |
|             | Total                       | 1.55       |



 $JSF = 1.014 \pm 0.021$ ;  $bJSF = 1.006 \pm 0.022$ 

Eike Schlieckau - Universität Hamburg

September 30th 2014

ATLAS-CONF-2013-046

#### JES+PU:

# I+Jets Top-Quark Mass @ CMS 7 TeV

- Kinematic fit
- In-situ measure JSF
- Use ideogram with all permutations

| JES+PU:      | Source                      | Unc. [GeV] |
|--------------|-----------------------------|------------|
| 0.27         | JES+PU+JSF                  | 0.43       |
| JSF:<br>0.33 | bJES+Had                    | 0.61       |
| 0.00         | Detector modelling          | 0.27       |
|              | Signal modelling            | 0.64       |
|              | Background                  | 0.13       |
|              | Method                      | 0.06       |
|              | Syst.                       | 1.03       |
|              | Stat. (m <sub>t</sub> only) | 0.27       |
|              | Total                       | 1.06       |



 $JSF = 0.994 \pm 0.009$ 

Eike Schlieckau - Universität Hamburg

September 30th 2014

#### JHEP 12 (2012) 105

# I+Jets Top-Quark Mass @ CMS 8 TeV

- Larger dataset and simulated samples
- Refined treatment of hadronisation and bJES uncertainties

| JES+PU:      | Source                      | Unc. [GeV] |
|--------------|-----------------------------|------------|
| 0.32         | JES+PU+JSF                  | 0.36       |
| JSF:<br>0.15 | bJES+Had                    | 0.44       |
| 0.13         | Detector modelling          | 0.28       |
|              | Signal modelling            | 0.39       |
|              | Background                  | 0.11       |
|              | Method                      | 0.10       |
|              | Syst.                       | 0.76       |
|              | Stat. (m <sub>t</sub> only) | 0.11       |
|              | Total                       | 0.77       |



Eike Schlieckau - Universität Hamburg

September 30th 2014

# I+Jets Top-Quark Mass @ CMS 8 TeV

- Top mass vs. kinematic variables
- Data well-described
- $\chi^2$  between data and MadGraph+Pythia Z2\*
  - $m_t: \chi^2/ndf = 37/47 \rightarrow P(\chi^2, ndf) = 85\%$
  - ∘ JSF:  $\chi^2$ /ndf = 61/47 → P( $\chi^2$ ,ndf) = 8.3%



Eike Schlieckau - Universität Hamburg

September 30th 2014

CMS-PAS-TOP-14-001

# **Dilepton Channel**

- > Small branching ratio (5% for ee /  $e\mu$  /  $\mu\mu$  final states)
- 2 bottom, 2 charged leptons and 2 undetectable neutrinos in the final state
  - $^\circ\,$  Require 2 isolated e /  $\mu$ , MET and 2 jets with up to 2 b tags
- Low and well predictable backgrounds (mainly Z+jets)
- Top-quark mass reconstruction difficult due to 2 undetectable neutrinos
  - Invariant mass of visible decay products: m<sub>lb</sub>
  - Analytic Matrix Weighting Technique (AMWT)

Eike Schlieckau - Universität Hamburg Septeml

### Dilepton Top-Quark Mass @ ATLAS 7 TeV

Use m<sub>lb</sub> as top-mass estimator

ATLAS-CONF-2013-077

- m<sub>lb</sub>: invariant mass of lepton and b jet
- No kinematic fitting

|              | Source             | Unc. [GeV] |
|--------------|--------------------|------------|
| bJES:        | JES+PU             | 0.88       |
| 0.71         | bJES+Had           | 0.84       |
| нац:<br>0.44 | Detector modelling | 0.52       |
|              | Signal modelling   | 0.67       |
|              | Background         | 0.14       |
|              | Method             | 0.07       |
|              | Syst.              | 1.49       |
|              | Stat.              | 0.64       |
|              | Total              | 1.62       |



Eike Schlieckau - Universität Hamburg September 30th 2014

# Analytic Matrix Weighting Technique

- Under-constrained system due to two neutrinos
- Constraining with help of W-boson and top-quark masses leads to (up to) eight possible solutions
- Scan over top-quark masses from 100 to 600 GeV
  - Repeat this with smeared jets
  - Assign weight for each solution
  - Sum weights of all solutions for each mass hypothesis
  - Use reconstructed mass with highest average weight

#### Dilepton Top-Quark Mass @ CMS 7 TeV

GeV

10

Events /

#### AMWT to reconstruct top-quark mass

#### CMS 2011, 5.0 fb<sup>-1</sup> at \s = 7 TeV 800F 1600 5 In (L/L 700 600 1400 500 400Ē 300Ē 1200 200 100Ē 1000 160 165 170 175 180 185 Top quark mass [GeV] 800 Data tt signal 600 tł background Single top 400 Drell-Yan 200 Diboson 100 150 200 250 300 350 400 Reconstructed mass [GeV] 11627 events m<sub>+</sub> = 172.50 ± 1.52 GeV (0.88%)

EPJC72 (2012) 2202

| Source             | Unc. [GeV] |
|--------------------|------------|
| JES+PU             | 0.98       |
| bJES+Had           | 0.76       |
| Detector modelling | 0.25       |
| Signal modelling   | 0.61       |
| Background         | 0.05       |
| Method             | 0.40       |
| Syst.              | 1.46       |
| Stat.              | 0.43       |
| Total              | 1.52       |

### Dilepton Top-Quark Mass @ CMS 8 TeV

- AMWT to reconstruct top-quark mass
- Blinded analysis

| Source             | Unc. [GeV] |
|--------------------|------------|
| JES+PU             | 0.69       |
| bJES+Had           | 0.69       |
| Detector modelling | 0.17       |
| Signal modelling   | 0.99       |
| Background         | 0.02       |
| Method             | 0.03       |
| Syst.              | 1.40       |
| Stat.              | 0.17       |
| Total              | 1.41       |



Eike Schlieckau - Universität Hamburg Se

### Dilepton Top-Quark Mass @ CMS 8 TeV

- Use minimal m<sub>lb</sub> as top-mass estimator
- Blinded analysis
- Extraction of m<sub>t</sub> possible using MCFM
  - Yields: 171.4 ± 1.1 GeV

| Source             | Unc. [GeV] |
|--------------------|------------|
| JES+PU             | 0.43       |
| bJES+Had           | 0.72       |
| Detector modelling | 0.31       |
| Signal modelling   | 0.99       |
| Background         | 0.12       |
| Method             | 0.07       |
| Syst.              | 1.29       |
| Stat.              | 0.32       |
| Total              | 1.33       |



CMS-PAS-TOP-14-014

# **Comparison of All Results**



Eike Schlieckau - Universität Hamburg Sep

# **CMS Top-Mass Combination**

- Combination of all standard CMS top-mass results
- Consistent between all decay channels

| JES+PU:      | Source             | Unc. [GeV] |
|--------------|--------------------|------------|
| 0.25         | JES+PU+JSF         | 0.27       |
| JSF:<br>0.10 | bJES+Had           | 0.39       |
|              | Detector modelling | 0.19       |
|              | Signal modelling   | 0.38       |
|              | Background         | 0.09       |
|              | Method             | 0.05       |
|              | Syst.              | 0.65       |
|              | Stat.              | 0.10       |
|              | Total              | 0.65       |



Eike Schlieckau - Universität Hamburg

# Summary

- Precision further increasing for m<sub>t</sub><sup>MC</sup> at the LHC
  - Reached precision below 1 GeV
- All measurements are systematically limited
  - 7 → 8 TeV @ CMS showed that larger datasets helped to reduce systematic uncertainties
- Combination of results are presented tomorrow
  - See talks by:
    - Giorgio Cortiana (tomorrow 9am, LHC combination)
    - Yvonne Peters (tomorrow 9:30am, Tevatron and world combination)

# **Back Up**

### All-Jets Top-Quark Mass @ ATLAS 7 TeV

| Signal modelling:                    | $\Delta m_t \; [\text{GeV}]$ | ĺ            | arXiv                             | :1409.0832               |
|--------------------------------------|------------------------------|--------------|-----------------------------------|--------------------------|
| Method calibration                   | 0.42                         |              |                                   |                          |
| Trigger                              | 0.01                         |              |                                   |                          |
| Signal MC generator                  | 0.30                         |              |                                   |                          |
| Hadronisation                        | 0.50                         |              |                                   |                          |
| Fast simulation                      | 0.24                         |              |                                   |                          |
| Colour reconnection                  | 0.22                         |              |                                   |                          |
| Underlying event                     | 0.08                         |              |                                   |                          |
| ISR and FSR                          | 0.22                         |              |                                   | $\Delta m_{\star}$ [GeV] |
| Proton PDF                           | 0.09                         |              |                                   |                          |
| Pile-up                              | 0.02                         |              | Statistics and method             | 0.09                     |
|                                      |                              |              | Physics modelling                 | 0.31                     |
| Background modelling:                | $\Delta m_t [\text{GeV}]$    |              | Detector description              | 0.36                     |
| Multijet background                  | 0.35                         |              | Mixed detector and modelling      | 0.05                     |
|                                      | -                            |              | Single high- $p_{\rm T}$ particle | 0.02                     |
| Jet measurements:                    | $\Delta m_t  [\text{GeV}]$   |              | Relative non-closure in MC        | 0.04                     |
| Jet energy scale                     | 0.51                         | $\mathbf{H}$ | Pile-up                           | 0.03                     |
| b-iet energy scale                   | 0.62                         |              | Close-by jets                     | 0.02                     |
| Jet energy resolution                | 0.01                         |              | Flavour composition and response  | 0.10                     |
| Jet reconstruction efficiency        | 0.01                         |              | Jet energy scale                  | 0.51                     |
| b-tag efficiency and mistag rate     | 0.17                         |              | k ist snorm soals                 | 0.62                     |
| Soft contributions to missing energy | 0.02                         |              | o-jet energy scale                | 0.02                     |
| JVF scale factors                    | 0.02                         | ļ            |                                   |                          |
| Total systematic uncertainty         | 1.22                         | Ì            |                                   |                          |

### All-Jets Top-Quark Mass @ CMS 7 TeV

| EPJC74 (2014) 2758                      | 1D analysis                       | 2D analysis          | 2D analysis                |  |  |
|-----------------------------------------|-----------------------------------|----------------------|----------------------------|--|--|
|                                         | $\delta_{m_{\rm t}}  ({\rm GeV})$ | $\delta_{m_t}$ (GeV) | $\delta_{\mathrm{JES}}$    |  |  |
| Fit calibration                         | 0.13                              | 0.14                 | 0.001                      |  |  |
| Jet energy scale                        | $0.97 \pm 0.06$                   | $0.09 \pm 0.10$      | $0.002 \pm 0.001$          |  |  |
| b-JES                                   | $0.49 \pm 0.06$                   | $0.52 \pm 0.10$      | $0.001 \pm 0.001$          |  |  |
| Jet energy resolution                   | $0.15 \pm 0.06$                   | $0.13 \pm 0.10$      | $0.003 \pm 0.001$          |  |  |
| b tagging                               | $0.05 \pm 0.06$                   | $0.04 \pm 0.10$      | $0.001 \pm 0.001$          |  |  |
| Trigger                                 | $0.24 \pm 0.06$                   | $0.26 \pm 0.10$      | $0.006 \pm 0.001$          |  |  |
| Pileup                                  | $0.05 \pm 0.06$                   | $0.09 \pm 0.10$      | $0.001 \pm 0.001$          |  |  |
| Parton distribution functions           | $0.03 \pm 0.06$                   | $0.07 \pm 0.10$      | $0.001 \pm 0.001$          |  |  |
| Renormalization and factorization scale | $0.08 \pm 0.22$                   | 0.31 ± <b>0.34</b>   | $0.005 \pm 0.003$          |  |  |
| ME-PS matching threshold                | $0.24 \pm 0.22$                   | $0.29 \pm 0.34$      | $0.001 \pm \textbf{0.003}$ |  |  |
| Underlying event                        | $0.20 \pm 0.12$                   | $0.42 \pm 0.20$      | $0.004 \pm 0.002$          |  |  |
| Color reconnection effects              | $0.04 \pm 0.15$                   | $0.58 \pm 0.25$      | $0.006 \pm 0.002$          |  |  |
| Multijet background                     | $0.13 \pm 0.06$                   | $0.60 \pm 0.10$      | $0.006 \pm 0.001$          |  |  |
| Total                                   | 1.21                              | 1.23                 | 0.013                      |  |  |

Eike Schlieckau - Universität Hamburg

### All-Jets Top-Quark Mass @ CMS 8 TeV

| CMS-PAS-TOP-14-002                          | $\delta m_t^{2D}$ (GeV) | δJSF                | $\delta m_t^{1D}$ (GeV) |
|---------------------------------------------|-------------------------|---------------------|-------------------------|
| Experimental uncertainties                  |                         |                     |                         |
| Fit calibration                             | 0.06                    | < 0.001             | 0.06                    |
| $p_{\rm T}$ - and $\eta$ -dependent JES     | 0.28                    | 0.006               | 0.86                    |
| Jet energy resolution                       | 0.10                    | 0.001               | 0.01                    |
| b tagging                                   | 0.02                    | < 0.001             | < 0.01                  |
| Pileup                                      | 0.31                    | 0.001               | 0.30                    |
| Calorimeter JES of trigger confirmation     | 0.18                    | 0.003               | 0.07                    |
| Non-t <del>ī</del> background               | 0.22                    | 0.002               | 0.08                    |
| Modeling of hadronization                   |                         |                     |                         |
| Flavor-dependent JSF                        | 0.36                    | 0.004               | 0.30                    |
| b fragmentation                             | 0.07                    | 0.001               | 0.03                    |
| Semi-leptonic B hadron decays               | 0.12                    | < 0.001             | 0.12                    |
| Modeling of the hard scattering process     |                         |                     |                         |
| PDF                                         | 0.02                    | < 0.001             | 0.01                    |
| Renormalization and<br>factorization scales | $0.19 {\pm} 0.19$       | $0.004 \pm 0.002$   | $0.18 {\pm} 0.14$       |
| ME-PS matching threshold                    | $0.20{\pm}0.19$         | $0.002 {\pm} 0.002$ | $0.09 {\pm} 0.14$       |
| ME generator                                | $0.09 {\pm} 0.21$       | $0.003 {\pm} 0.002$ | $0.17 {\pm} 0.15$       |
| Modeling of non-perturbative QCD            |                         |                     |                         |
| Underlying event                            | $0.13 \pm 0.28$         | $0.000 \pm 0.002$   | $0.11 \pm 0.20$         |
| Color reconnection modeling                 | $0.00 \pm 0.25$         | $0.000 \pm 0.002$   | $0.03 {\pm} 0.18$       |
| Total                                       | 0.83                    | 0.011               | 1.05                    |

Eike Schlieckau - Universität Hamburg

#### I+Jets Top-Quark Mass @ ATLAS 7 TeV

| ATI AS-CONF-2013-046                         | 2d-analy            | vsis  | 3d-analysis         |       |       |
|----------------------------------------------|---------------------|-------|---------------------|-------|-------|
|                                              | $m_{\rm top}$ [GeV] | JSF   | $m_{\rm top}$ [GeV] | JSF   | bJSF  |
| Measured value                               | 172.80              | 1.014 | 172.31              | 1.014 | 1.006 |
| Data statistics                              | 0.23                | 0.003 | 0.23                | 0.003 | 0.008 |
| Jet energy scale factor (stat. comp.)        | 0.27                | n/a   | 0.27                | n/a   | n/a   |
| bJet energy scale factor (stat. comp.)       | n/a                 | n/a   | 0.67                | n/a   | n/a   |
| Method calibration                           | 0.13                | 0.002 | 0.13                | 0.002 | 0.003 |
| Signal MC generator                          | 0.36                | 0.005 | 0.19                | 0.005 | 0.002 |
| Hadronisation                                | 1.30                | 0.008 | 0.27                | 0.008 | 0.013 |
| Underlying event                             | 0.02                | 0.001 | 0.12                | 0.001 | 0.002 |
| Colour reconnection                          | 0.03                | 0.001 | 0.32                | 0.001 | 0.004 |
| ISR and FSR (signal only)                    | 0.96                | 0.017 | 0.45                | 0.017 | 0.006 |
| Proton PDF                                   | 0.09                | 0.000 | 0.17                | 0.000 | 0.001 |
| single top normalisation                     | 0.00                | 0.000 | 0.00                | 0.000 | 0.000 |
| W+jets background                            | 0.02                | 0.000 | 0.03                | 0.000 | 0.000 |
| QCD multijet background                      | 0.04                | 0.000 | 0.10                | 0.000 | 0.001 |
| Jet energy scale                             | 0.60                | 0.005 | 0.79                | 0.004 | 0.007 |
| <i>b</i> -jet energy scale                   | 0.92                | 0.000 | 0.08                | 0.000 | 0.002 |
| Jet energy resolution                        | 0.22                | 0.006 | 0.22                | 0.006 | 0.000 |
| Jet reconstruction efficiency                | 0.03                | 0.000 | 0.05                | 0.000 | 0.000 |
| <i>b</i> -tagging efficiency and mistag rate | 0.17                | 0.001 | 0.81                | 0.001 | 0.011 |
| Lepton energy scale                          | 0.03                | 0.000 | 0.04                | 0.000 | 0.000 |
| Missing transverse momentum                  | 0.01                | 0.000 | 0.03                | 0.000 | 0.000 |
| Pile-up                                      | 0.03                | 0.000 | 0.03                | 0.000 | 0.001 |
| Total systematic uncertainty                 | 2.02                | 0.021 | 1.35                | 0.021 | 0.020 |
| Total uncertainty                            | 2.05                | 0.021 | 1.55                | 0.021 | 0.022 |

#### Eike Schlieckau - Universität Hamburg

# I+Jets Top-Quark Mass @ CMS 7 TeV

| JHEP 12 (2012) 105                           | $\mu$ +jets                             |                         | e+jets                                 |                                      | $\ell + jets$                            |                        |
|----------------------------------------------|-----------------------------------------|-------------------------|----------------------------------------|--------------------------------------|------------------------------------------|------------------------|
|                                              | $\delta_{m_{\rm t}}^{\mu}  ({\rm GeV})$ | $\delta^{\mu}_{ m JES}$ | $\delta_{m_{\rm t}}^{\rm e}({ m GeV})$ | $\delta^{\mathrm{e}}_{\mathrm{JES}}$ | $\delta_{m_{\rm t}}^{\ell}  ({\rm GeV})$ | $\delta^\ell_{ m JES}$ |
| Fit calibration                              | 0.08                                    | 0.001                   | 0.09                                   | 0.001                                | 0.06                                     | 0.001                  |
| b-JES                                        | 0.60                                    | 0.000                   | 0.62                                   | 0.000                                | 0.61                                     | 0.000                  |
| $p_{\mathrm{T}}$ - and $\eta$ -dependent JES | 0.30                                    | 0.001                   | 0.28                                   | 0.001                                | 0.28                                     | 0.001                  |
| Lepton energy scale                          | 0.03                                    | 0.000                   | 0.04                                   | 0.000                                | 0.02                                     | 0.000                  |
| Missing transverse momentum                  | 0.05                                    | 0.000                   | 0.07                                   | 0.000                                | 0.06                                     | 0.000                  |
| Jet energy resolution                        | 0.22                                    | 0.004                   | 0.24                                   | 0.004                                | 0.23                                     | 0.004                  |
| b tagging                                    | 0.11                                    | 0.001                   | 0.15                                   | 0.001                                | 0.12                                     | 0.001                  |
| Pileup                                       | 0.07                                    | 0.002                   | 0.08                                   | 0.001                                | 0.07                                     | 0.001                  |
| Non-t $\overline{t}$ background              | 0.10                                    | 0.001                   | 0.16                                   | 0.000                                | 0.13                                     | 0.001                  |
| Parton distribution functions                | 0.07                                    | 0.001                   | 0.07                                   | 0.001                                | 0.07                                     | 0.001                  |
| Renormalization and                          | 0.92                                    | 0.004                   | 0.41                                   | 0.005                                | 0.24                                     | 0.004                  |
| factorization scales                         | 0.25                                    | 0.004                   | 0.41                                   | 0.005                                | 0.24                                     | 0.004                  |
| ME-PS matching threshold                     | 0.17                                    | 0.000                   | 0.15                                   | 0.001                                | 0.18                                     | 0.001                  |
| Underlying event                             | 0.26                                    | 0.002                   | 0.24                                   | 0.001                                | 0.15                                     | 0.002                  |
| Color reconnection effects                   | 0.66                                    | 0.004                   | 0.39                                   | 0.003                                | 0.54                                     | 0.004                  |
| Total                                        | 1.06                                    | 0.008                   | 1.00                                   | 0.007                                | 0.98                                     | 0.008                  |

#### Eike Schlieckau - Universität Hamburg

# I+Jets Top-Quark Mass @ CMS 8 TeV

| CMS-PAS-TOP-14-001                           | $\delta m_t^{2D}$ (GeV) | δJSF                | $\delta m_t^{1D}$ (GeV) |
|----------------------------------------------|-------------------------|---------------------|-------------------------|
| Experimental uncertainties                   |                         |                     |                         |
| Fit calibration                              | 0.10                    | 0.001               | 0.06                    |
| $p_{\mathrm{T}}$ - and $\eta$ -dependent JES | 0.18                    | 0.007               | 1.17                    |
| Lepton energy scale                          | 0.03                    | < 0.001             | 0.03                    |
| MET                                          | 0.09                    | 0.001               | 0.01                    |
| Jet energy resolution                        | 0.26                    | 0.004               | 0.07                    |
| b tagging                                    | 0.02                    | < 0.001             | 0.01                    |
| Pileup                                       | 0.27                    | 0.005               | 0.17                    |
| Non-t <del>ī</del> background                | 0.11                    | 0.001               | 0.01                    |
| Modeling of hadronization                    |                         |                     |                         |
| Flavor-dependent JSF                         | 0.41                    | 0.004               | 0.32                    |
| b fragmentation                              | 0.06                    | 0.001               | 0.04                    |
| Semi-leptonic B hadron decays                | 0.16                    | < 0.001             | 0.15                    |
| Modeling of the hard scattering process      |                         |                     |                         |
| PDF                                          | 0.09                    | 0.001               | 0.05                    |
| Renormalization and                          | $0.12 \pm 0.13$         | $0.004 \pm 0.001$   | $0.25\pm0.08$           |
| factorization scales                         | $0.12 \pm 0.13$         | 0.00410.001         | 0.2510.00               |
| ME-PS matching threshold                     | $0.15 {\pm} 0.13$       | $0.003 {\pm} 0.001$ | $0.07 {\pm} 0.08$       |
| ME generator                                 | $0.23 {\pm} 0.14$       | $0.003 {\pm} 0.001$ | $0.20 {\pm} 0.08$       |
| Modeling of non-perturbative QCD             |                         |                     |                         |
| Underlying event                             | $0.14{\pm}0.17$         | $0.002 \pm 0.002$   | $0.06 {\pm} 0.10$       |
| Color reconnection modeling                  | $0.08 {\pm} 0.15$       | $0.002 \pm 0.001$   | $0.07 \pm 0.09$         |
| Total                                        | 0.75                    | 0.012               | 1.29                    |

Eike Schlieckau - Universität Hamburg

### Dilepton Top-Quark Mass @ ATLAS 7 TeV

| Description                                  | Value [GeV] | ATLAS-CONF-2013-077 |
|----------------------------------------------|-------------|---------------------|
| Measured value                               | 173.09      |                     |
| Statistical uncertainty                      | 0.64        |                     |
| Method calibration                           | 0.07        | -                   |
| Signal MC generator                          | 0.20        |                     |
| Hadronisation                                | 0.44        |                     |
| Underlying event                             | 0.42        |                     |
| Colour reconnection                          | 0.29        |                     |
| ISR/FSR                                      | 0.37        |                     |
| Proton PDF                                   | 0.12        |                     |
| Background                                   | 0.14        | -                   |
| Jet energy scale                             | 0.89        |                     |
| <i>b</i> -jet energy scale                   | 0.71        |                     |
| <i>b</i> -tagging efficiency and mistag rate | 0.46        |                     |
| Jet energy resolution                        | 0.21        |                     |
| Missing transverse momentum                  | 0.05        |                     |
| Pile-up                                      | 0.01        |                     |
| Electron uncertainties                       | 0.11        |                     |
| Muon uncertainties                           | 0.05        |                     |
| Total systematic uncertainty                 | 1.50        | _                   |
| Total uncertainty                            | 1.63        |                     |

#### Dilepton Top-Quark Mass @ CMS 7 TeV

| Source                                  | $\Delta m_{\rm t}~({\rm GeV})$ | EPJC72 (2012) 2202 |
|-----------------------------------------|--------------------------------|--------------------|
| Jet energy scale                        | +0.90<br>-0.97                 |                    |
| b-jet energy scale                      | +0.76<br>-0.66                 |                    |
| Jet energy resolution                   | $\pm 0.14$                     |                    |
| Lepton energy scale                     | $\pm 0.14$                     |                    |
| Unclustered $E_{\rm T}^{\rm miss}$      | $\pm 0.12$                     |                    |
| b-tagging efficiency                    | $\pm 0.05$                     |                    |
| Mistag rate                             | $\pm 0.08$                     |                    |
| Fit calibration                         | $\pm 0.40$                     |                    |
| Background normalization                | $\pm 0.05$                     |                    |
| Matching scale                          | ±0.19                          |                    |
| Renormalisation and factorisation scale | $\pm 0.55$                     |                    |
| Pileup                                  | ±0.11                          |                    |
| PDFs                                    | $\pm 0.09$                     |                    |
| Underlying event                        | $\pm 0.26$                     |                    |
| Colour reconnection                     | ±0.13                          |                    |
| Monte Carlo generator                   | $\pm 0.04$                     |                    |
| Total                                   | $\pm 1.48$                     |                    |

Eike Schlieckau - Universität Hamburg

#### Dilepton Top-Quark Mass @ CMS 8 TeV

|   | Source of uncertainty                                                                      | $\delta m_{\rm t}({\rm GeV})$ | CMS-PAS-TOP-14-010 |
|---|--------------------------------------------------------------------------------------------|-------------------------------|--------------------|
|   | Experimental uncertainties                                                                 |                               |                    |
|   | Fit calibration                                                                            | 0.03                          |                    |
|   | $p_{\rm T}$ - and $\eta$ -dependent JES                                                    | 0.61                          |                    |
|   | Lepton energy scale                                                                        | 0.12                          |                    |
|   | Unclustered $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0.07                          |                    |
|   | Jet energy resolution                                                                      | 0.09                          |                    |
|   | b tagging                                                                                  | 0.04                          |                    |
|   | Pile-up                                                                                    | 0.15                          |                    |
|   | Non- <i>tt</i> background                                                                  | 0.02                          |                    |
|   | Modeling of hadronization                                                                  |                               |                    |
|   | Flavor-dependent jet energy scale                                                          | 0.28                          |                    |
|   | b fragmentation                                                                            | 0.67                          |                    |
|   | Semi-leptonic B hadron decays                                                              | 0.18                          |                    |
|   | Modeling of the hard scattering process                                                    | /                             |                    |
|   | PDF                                                                                        | 0.18                          |                    |
|   | Renormalization and factorization scales                                                   | 0.87                          |                    |
|   | ME-PS matching threshold                                                                   | 0.13                          |                    |
| - | ME generator                                                                               | 0.37                          |                    |
|   | Modeling of non-perturbative QCD                                                           |                               |                    |
|   | Underlying event                                                                           | 0.04                          |                    |
|   | Color reconnection modeling                                                                | 0.16                          |                    |
| - | Total                                                                                      | 1.40                          |                    |

Eike Schlieckau - Universität Hamburg

## **CMS Top-Mass Combination**



#### CMS-PAS-TOP-14-015

Eike Schlieckau - Universität Hamburg

# **Top Quark – Production**

- Mainly produced in pairs via fusion of 2 gluons due to PDFs (x<sub>1</sub>x<sub>2</sub> ≈ 0.04<sup>2</sup> at LHC)
- Cross section (NNLO, Phys.Rev.Lett **110** (2013) 252004):
  - @7 TeV: 172 ± 8 pb
  - @8 TeV: 246 ± 11 pb



Eike Schlieckau - Universität HamburgSeptember 30th 2014

# **Ideogram Method**



Eike Schlieckau - Universität Hamburg