

(Introduction)

- Charge, Width & Spin correlations
- Production Asymmetries & extras
- Conclusions & Outlook

Andreas Jung (Fermilab) for the CDF and DØ collaboration

TOP 2014 – International workshop on top quark physics September 28th – October 3rd 2014, Cannes, France

Top quark introduction

Top quark introduction

BR, bg

decrease

q

 Experimentally: Asymmetries based on <u>decay leptons</u> or fully <u>reconstructed top quarks</u> "easier"

"harder"

A. Jung

 $A_{\rm C} = \frac{N(\Delta|y_{\rm t}| > 0) - N(\Delta|y_{\rm t}| < 0)}{N(\Delta|y_{\rm t}| > 0) + N(\Delta|y_{\rm t}| < 0)}$

Acc. by PRD: [arxiv:1403:1294]

Leptonic asymmetries less affected by reconstruction effects:

- Iepton+jets, full Run II data set, Final measurements
 - \rightarrow Maximize acceptance & precision: Include the 3 jet bin
 - Larger contribution of backgrounds in 3 jet bin
 - \rightarrow need to calibrate W+jets, use 0 *b*-tag
 - \rightarrow Improved background rejection and modeling
 - Discriminant D_c to determine sample composition

- lepton+jets, updated measurement of leptonic asymmetries
- Discriminant D_c to determine sample composition
- Need to calibrate W+jets, use 0 b-tag

Acc. by PRD:

- Asymmetry in W+jets control region (CR) different from MC
- PDF uncertainty shown by yellow bars
- Full difference between data and MC slope taken as systematic uncertainty

 lepton+jets, updated measurement of leptonic asymmetries
 Discriminant D_c to determine sample

composition

In agreement with SM:

 $A_1 = 4.2 \pm 2.3 \text{ (stat.)} \pm \frac{1.7}{2.0} \text{ (syst)}$

MC@NLO: 2%

• Differential measurement of 🔗

the leptonic asymmetry

A₁ affected by polarization

A. Falkowski, M. L. Mangano, A.Martin, G. Perez, and J. Winter, Phys. Rev. D 87, 034039 (2013)

A. Jung

Acc. by PRD: [arxiv:1403:1294]

Update in dilepton decay channel by CDF employing 9.1/fb

Combined $A_1 = 9.0 \pm \frac{2.8}{2.6}$ (tot.) %

Update in dilepton decay channel by CDF employing 9.1/fb

All use full data set, D0 + CDF combinations to come

Solution Top quark asymmetries

- Lots of effort went into maximizing expected significance:
 - → Understand & Improve systematic uncertainties
 - \rightarrow Increase available sample size
 - Full Run II expected statistical uncertainty 4.6%, need 3% for 5 s.d. significance (given central value does not move) → <u>Can we get to 3% ?</u>

New kinematic fit:

- Shares same selection as the one for the leptonic asymmetry measurement, also employs Discriminant D
- Combine several channels (w different purity) & unfold to parton level
 - \rightarrow used modified TUnfold
 - \rightarrow Acc. by PRD [arxiv:1405.0421]

 Achieved improvement beyond luminosity scaling with 3% total uncertainty

• SM @NNLO: ~10% (Czakon, Mitov, et al.)

 $A_{_{FB}}$

A. Jung

 \rightarrow D0 agrees with SM within uncertainties \rightarrow CDF higher than SM predictions

10.6 ± 3.0 (tot.) %

<u>= 16.4 ±</u> 4.5 (tot.) %

- Shares same selection as the one for the leptonic asymmetry measurement, also employs Discriminant D [arxiv:1405.0421]
- Combine several channels (w different purity) & unfold to parton level
 Used modified TU Infold
 - \rightarrow used modified TUnfold
- $m(t\bar{t})$ dependence of A_{FB} :
 - 2D regularized unfolding \rightarrow account for variable bin-size
- $\rightarrow \text{ condition is curvature density}}_{10^{-2}}$

 Existing CDF measurement in I+jets decay channel also measured kinematic dependence of A_{FB}

- Kinematic dependencies larger than "currently" predicted by SM
- Good agreement of D0 data with most recent pQCD @NNLO (see yesterdays talk by Michael Czakon)

- New measurement by D0 in the dilepton channel employing the matrix element method:
 - \rightarrow assign a likelihood per event for most probably Δy (x) value

 Systematic uncertainties dominated by signal modeling, in particular hadronization and showering and calibration

 Test SM or test for BSM, but need to consider unknown polarization in calibration

$$_{B}$$
 = 18.0 ± 6.9 (tot.) %

=
$$18.0 \pm 6.9$$
 (tot.) ± 5.1 (model) %

Uncertainty on $A_{\text{FB}}^{t\bar{t}}$ (%) Source of uncertainty Detector modeling 0.14 jet energy scale jet energy resolution 0.17flavor-dependent jet response 0.03 b-tagging 0.11 Signal modeling ISR/FSR 0.32forward/backward ISR 0.36 hadronisation and showering -1.08higher order correction 0.80 PDF 0.60Background model fake background normalization 0.35fake background shape 0.35 background normalization 0.53Calibration $\Delta y_{t\bar{t}} \mod$ 2.7 calibration statistics 0.4 Total 3.3

FB

- Most Tevatron results use full data sets
- Combinations to come

Theory:

 Latest @NNLO is ≈ 10%
 → agreement with D0, while CDF little higher

Axi gluons & Z' models

- Various axi gluon models with different couplings, differential cross section predictions (A. Falkowicz, et al.)
- Compare various models to unfolded cross section data using full covariance matrix:

$$\chi^2 = \sum_{i,j} (y-\mu)_i \cdot \operatorname{cov}_{i,j}^{-1} \cdot (y-\mu)_j$$

- Models with masses of 0.2 to 2 TeV for L (left), R (right), A (axial)
- Models are constrained by σ(tt), A_{FB} and high tail of dσ/dm(tt) at Tevatron and LHC
- Some models are in tension with the presented data !
 → Z', some axi gluons

A. Jung

Tevatron data adds sensitivity at low mass \rightarrow specific models constrained

Other asymmetries...

What about *b*-quark asymmetries ?

- CDF: Data side-band technique to estimate light quark asymmetry
 - Identify b and \overline{b} employing jet charge
 - Bayesian technique to correct for detector effects

Properties of the top quark

Results agree with SM

A. Jung

Conf. Note 11092

CDF Run II Preliminary $\int \mathcal{L} = 9.5 \, \text{fb}^{-1}$

- Final legacy measurements of top quark properties
 → Expect spin correlation & polarization measurements soon (D0)
- What about the forward-backward Asymmetry ?
 - \rightarrow D0 closer to SM, CDF somewhat larger than SM
 - \rightarrow Latest: D0 consistent with A_{FB} prediction at NNLO QCD
 - \rightarrow *b*-quark asymmetries agree with SM expectations
 - → No indication for axi gluon/Z' contributions in differential cross sections
- Tevatron combinations to come

 Focused on asymmetry results, only small selection of property results shown, more information:

D0 Top Web pages

CDF Top Web pages

- Peak luminosities: 3 4 x 10³² cm⁻²s⁻¹
- Tevatron shutdown September 2011

- p _____ p
- Peak luminosities: 8 x 10³³ cm⁻²s⁻¹
- ~5 (25) fb⁻¹/experiment recorded
- LHC consolidation/upgrades till 2015

Big thanks to the Accelerator Divisions!

Top quark width

- Complementary due to initial state
- Evidence for spin correlations at D0

Properties of the top quark

	Absolute uncertainty, %		
	Reconstruction level		Prod. level
Source	Prediction	Measurement	Measurement
Jet reco	-0.1	1.000	2000
JES/JER	+0.1	+0.1/-0.3	+0.2/-0.3
Signal modeling	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	-0.2	+0.6/-0.4
b tagging	± 0.1	+0.5/-0.8	+0.8/-1.1
Bg subtraction	n/a	+0.1/-0.3	+0.1/-0.3
Bg modeling	n/a	+1.4/-1.5	+1.3/-1.5
PDFs		+0.3/-0.2	+0.1/-0.2
Total	± 0.1	+1.5/-1.7	+1.7/-2.0

Forward-Backward Lepton Asymmetry, %

	$A^l_{ m FB},\%$		
Channel	Data	MC@NLO	
l+3 jets, 1 b tag	$-6.8 \pm 6.0 (\text{stat.})^{+6.1}_{-5.6} (\text{syst.})$	2.7 ± 0.4	
$l+3$ jets, $\geq 2 b$ tags	$3.7 \pm 4.3 (\text{stat.})^{+1.1}_{-1.2} (\text{syst.})$	2.8 ± 0.3	
$l+\geq 4$ jets, 1 b tag	$14.8 \pm 4.2 (\text{stat.})^{+1.1}_{-1.2} (\text{syst.})$	0.5 ± 0.3	
$l+\geq 4$ jets, $\geq 2 b$ tags	$-0.9 \pm 3.2 (\text{stat.})^{+0.3}_{-0.9} (\text{syst.})$	1.1 ± 0.2	
Total	$2.9 \pm 2.1 (\text{stat.})^{+1.5}_{-1.7} (\text{syst.})$	1.6 ± 0.2	

Properties of the top quark

 Various axi gluon models w section predictions provid 	ith different couplined by A. Falkowicz	ngs, differential cross z [arxiv:1401.2443]
Remarks:		
and I (left), R (right), A (axial)	n	$\sigma_{\rm tot}(pp \to t\bar{t}) \ [pb]$
 Large masses highly constrained by 	Data	$8.27^{+0.92}_{-0.91}$ (stat. + syst.)
LHC measurement	NNLO pQCD (SM)	$7.24_{-0.27}^{+0.23}$ (scales + pdf)
tough as effects are small		
Models use inclusive cross sections		$\Delta \sigma_{\rm tot}(p\bar{p} \to t\bar{t}) \;[{\rm pb}]$
and asymmetry measurements at the Tevatron, in addition high tail of m(tt) at	axi200L	0.97 ± 0.06 (scale)
Tevatron and LHC Phys. Rev. D. 88, 112002 (2013) Phys. Rev. D 84, 112005 (2011)	axi200R	0.97 ± 0.06 (scale)
	axi200A	0.06 ± 0.04 (scale)
CDF Conf. 11035	axi400A	0.26 ± 0.04 (scale)
	axi800A	0.22 ± 0.04 (scale)
Acc. by PRD [arxiv:1309.7570]	axi2000L	0.87 ± 0.15 (scale)
	axi2000R	0.55 ± 0.06 (scale)
CMS [arxiv:1309.2030]	axi2000A	0.05 ± 0.06 (scale)
D0 [arxiv:1401.5785]	Z'220	-1.00 ± 0.06 (scale)
CDF PRL 102 222003		

Axi gluons & Z' models Ł

