

Richard Hawkings (CERN) on behalf of ATLAS and CMS

Prepared with help from Efe Yazgan (Ghent)

Top2014 conference, Cannes, France, 30/9/2014

- Many 'properties' of the top quark covered in other dedicated sessions/talks
 - Dedicated session on top mass later today
 - Top couplings and W-helicity: Tamara Vazquez Schroder
 - Rare decays / FCNC: Reza Goldouzian
 - Single top results: Abideh Jafari
- What's left (wrt LHC measurements) this talk:
 - tT charge asymmetry
 - tT spin correlations
 - Top quark polarisation in tT and single top events
- Cover available measurements for each of these subjects (refs. at end)
 - New ATLAS results on asymmetry at 7 TeV (dilepton), spin correlations at 8 TeV
 - Some comparisons and conclusions

30th September 2014

top

anti-top

<u>d</u> dy_t

Well-known Tevatron forward/backward asymmetry in tT events

$$A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$\Delta y = y_t - y_{\bar{t}}$$

- Top quark preferentially follows p beam direction
- Asymmetry zero at LO, but appears at $O(\alpha_s^3)$)
 - Inteference between Born vs box diagrams, and ISR vs FSR in top-antitop-gluon

do dy_f

- Historically, A_{FB} bigger than expected in SM (~9%), especially at high m(tT)
 - Less pronounced in recent measurements, especially from D0
- LHC collides pp, not ppbar no A_{FB} but define analogous charge asymmetry:

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

$$\Delta|y| = |y_{t}| - |y_{\bar{t}}|$$

- SM prediction for inclusive A_c is ~1%
 - Much smaller effect than at Tevatron (gg dominates)
- LHC measurements in I+jets and dilepton

- Measurements from ATLAS (7 TeV) and CMS (7, 8 TeV with similar analysis)
- Select events with e or μ , ≥4 jets with ≥1 b-tags, requirements on E_T^{miss} / m_T^W
 - Samples of ~60k events (2011) with ~20% background (mainly W+jets, single top)
 - W+jet background level estimated from data, exploiting W⁺/W⁻ charge asymmetry (ATLAS) or template fits to m_T^W and M3 (hadronic top mass) variables (CMS)
 - Some backgrounds (W+jets, single top) are asymmetric in reconstructed Δ|y|
 - tT system fully reconstructed exploiting kinematic fit, choice of best combination

- Correct reconstructed Δ|y| distribution for background, acceptance, reslⁿ
 - CMS uses regularized unfolding with matrix inversion (Blobel)
 - Matrix factorises in to migration (resolution) and acceptance corrections

- ATLAS uses Fully-Bayesian Unfolding (FBU) to produce posterior $\Delta|y|$ distrib. $p(\mathbf{T}|\mathbf{D}, \mathcal{M}) \propto \mathcal{L}(\mathbf{D}|\mathbf{T}, \mathcal{M}) \cdot \pi(\mathbf{T})$ Truth T, data D, migration matrix M, prior $\pi(\mathbf{T})$
 - Flat prior used for all but A_c vs. $p_T(tT)$ use curvature prior for regularisation
 - Systematic effects can be marginalised (integrated out) from posterior distrib.

Inclusive A_c – lepton+jet results

- ATLAS quotes inclusive $A_c^{\Delta lyl}$ and A_c for m(tt)>600 GeV and β_z >0.6
 - β_{z} is velocity of tT along z-axis

Enhance gabar contribution and potential effects of new physics

	$A_{ m C}$	Data	Theory	
ATLAS	Unfolded	$0.006 {\pm} 0.010$	$0.0123 {\pm} 0.0005$	Theory:
l+iets	Unfolded with $m_{t\bar{t}} > 600 \text{ GeV}$	$0.018{\pm}0.022$	$0.0175\substack{+0.0005\\-0.0004}$	Rernreuther & S
,	Unfolded with $\beta_{z,t\bar{t}} > 0.6$	$0.011 {\pm} 0.018$	$0.020\substack{+0.006\\-0.007}$	

All inclusive A_c values compatible with zero and with SM predictions 30th September 2014 **Richard Hawkings**

- Combination of unfolded A_c measurements
 - For ATLAS, used separate statistical and systematic uncertainties without the FBU marginalisation procedure
 - Result 0.005±0.007±0.006 improves on ATLAS by 18% and CMS by 40%
 - Dominant systematics: detector/W+jets modelling, insensitive to correlation assumptions
 - Result compatible with both zero and NLO+EW prediction

		ATLAS	CMS	Comb.	Corr.			
	A_C	0.006	0.004	0.005	0.058	TOPLHCWG March 20	eliminary √s = 7	TeV
	Statistical	0.010	0.010	0.007	0			
a	Detector response model	0.004	0.007	0.004	0			(stat) (syst)
	Signal model	< 0.001	0.002	0.001	1	CMS		0.004 ± 0.010 ± 0.011
ties	W+jets model	0.002	0.004	0.003	0.5	[PLB 717 (2012) 129]		
ain	QCD model	< 0.001	0.001	0.000	0			0.000 0.010 0.005
ert	Pileup+MET	0.002	< 0.001	0.001	0	ATLAS		$0.006 \pm 0.010 \pm 0.005$
ĕ	PDF	0.001	0.002	0.001	1	[JHEP 1402 (2014) 107]		
	MC statistics	0.002	0.002	0.001	0	ATLAS+CMS		$0.005 \pm 0.007 \pm 0.006$
	Model dependence							
	Specific physics models	< 0.001	*	0.000	0	Theory (NILO, FM)		0.0115 . 0.0006
	General simplified models	*	0.007	0.002	0	[JHEP 1201 (2012) 063]		0.0115 ± 0.0000
	Systematic uncertainty	0.005	0.011	0.006				
	Total uncertainty	0.011	0.015	0.009		-0.05		0.05
	30th September 2014			Ric	hard H	lawkings	Å _c	6

- Both experiments show results with A_C vs. |y(tT)|, $p_T(tT)$ and m(tT)
 - In unfolding, need to consider migration in $\Delta|y|$ and in differential variable
 - Results compared to NLO+EW and BSM models inspired by Tevatron results
 - CMS: BSM effective theory with an anomalous axial-vector gluon coupling (EAG)
 - ATLAS: heavy axigluon exchanged in s-channel

- Standard dilepton event selections used:
 - 2 leptons (ee, $\mu\mu$, $e\mu$), Z-veto for ee/ $\mu\mu$, ≥2 jets
 - ≥1 b-tag (CMS), H_T cut for eµ (ATLAS)
- For A_c, need to fully reconstruct tT kinematics
 - 2 neutrinos vs. 1 E_T^{miss}, lepton/b pairing ambiguities
 - CMS uses Analytical Matrix Weighting Technique find most probable kinematics for m_{top}=172.5 GeV
 - ATLAS uses similar neutrino weighting technique sampling the expected neutrino η distributions
 - Final samples of ~10k events/7.5% background (CMS), or 8k / 15% (ATLAS)
 - Backgrounds from Wt single top, Z+jets, diboson, fakes
- Can also define a lepton asymmetry from lepton ηs:

 $A_{\mathrm{C}}^{\mathrm{lep}} = \frac{N(\Delta|\eta_{\ell}| > 0) - N(\Delta|\eta_{\ell}| < 0)}{N(\Delta|\eta_{\ell}| > 0) + N(\Delta|\eta_{\ell}| < 0)}.$

- Related to A_c, sensitive to anomalous top polarisation
 - No requirement to reconstruct tT kinematics

30th September 2014

- Unfold distributions for lepton $\Delta |\eta|$ (bin-by-bin correction) and top $\Delta |y|$ (FBU)
 - Uncertainties are dominated by statistics for Δ|η|
 - Statistical and systematics are ~ equal for top/anti top Δ|y|, dominated by detector and background modelling

30th September 2014

Asymmetries derived from ee/µµ/eµ differential distributions, then combined

Results compared to SM NLO+EW predictions (Kühn & Rodrigo)

	Asymmetry (%)	ATLAS	CMS	LHC comb	NLO+EW
7 TeV	I+jets A _c	$0.6 \pm 1.0 \pm 0.5$	$0.4 \pm 1.0 \pm 1.1$	$0.5 \pm 0.7 \pm 0.6$	1.15 ± 0.06
	dilepton A _c	$2.1 \pm 2.5 \pm 1.7$	$-1.0 \pm 1.7 \pm 0.8$		1.15 ± 0.06
	Dilepton A _{lep}	$2.4 \pm 1.5 \pm 0.9$	$0.9 \pm 1.0 \pm 0.6$		0.70 ± 0.03
8 TeV	I+jets A _c		$0.5 \pm 0.7 \pm 0.6$		1.11 ± 0.04

- Most precise A_c measurements at level of ~1%, dilepton ~2% or higher
 - Compatible with zero and with SM theory prediction
- A_{lep} measurements compatible with zero SM asymmetry again small
- Future prospects for 8 TeV and 13-14 TeV
 - Potential to measure $A_c \neq 0$ with combination of 8 TeV analyses...?
 - More statistics for high m(tT), high β_z region enhanced sensitivity to qqbar
 - But reduced qqbar fraction of 9% at 14 TeV (gg dominates)
 - Not yet systematics limited for inclusive A_c exploit full statistics
 - Scope for fiducial measurements (e.g 4 vs 5 jet) to reduce unfolding corrections?

Summary of 7 TeV asymmetry measurements

Interlude – bbbar charge asymmetry from LHCb

105+

- LHCb measured b-quark A_C in pp collisions
 - Each b-quark from b-bbar forms a single jet
 - Two b-jets, each 2<y<4, E_T >20 GeV, $\Delta \phi$ >2.6 rad
 - Restricted y acceptance of forward geometry
 - Require at least one muon from semileptonic decay to tag charge of b/ bbar
 - Purity of $70.3 \pm 0.3\%$, measured with dimuon events
 - Sample ~400k events, c-cbar contamination ~4%
- Measurement in 3 mass bins: A_C^{bb}(x,y) GeV

 $A_{\rm C}^{b\bar{b}}(40,75) = 0.4 \pm 0.4 \,(\text{stat}) \pm 0.3 \,(\text{syst})\%,$ $A_{\rm C}^{b\bar{b}}(75,105) = 2.0 \pm 0.9 \,(\text{stat}) \pm 0.6 \,(\text{syst})\%,$ $A_{\rm C}^{b\bar{b}}(>105) = 1.6 \pm 1.7 \,(\text{stat}) \pm 0.6 \,(\text{syst})\%,$

- Expected SM asymmetries up to ~1%
 - Additional ~2% contribution around Z mass from Z→bb decays

LHCb Simulation 40-75 Mbb true [GeV/c²] Mbb reco

[dơ/d∆ y]/ơ

- Top quark lifetime of \sim 3 10⁻²⁵ sec is much shorter than hadronisation time
 - Top decays as a bare quark, and does not form hadrons
 - Top spin info is not 'corrupted' by QCD interactions, transferred to decay products
- Angular decay distribution: $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos(\theta_i)} = (1 + \alpha_i \mathbf{P} \cos(\theta_i))/2$
 - θ_i angle between top decay product i and top polarisation P along chosen axis
 - α_i is spin analysing power: ~±1 for charged leptons, -0.966 / -0.393 for d / b quark
 - Normally use helicity basis, chose quantisation axis as top quark momentum direction in tT rest frame
- Negligible polarisation in SM, but spins of t and T are correlated

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos(\theta_{+})\ d\cos(\theta_{-})} = \frac{1}{4}\left(1 + A\ \alpha_{+}\alpha_{-}\cos(\theta_{+})\cos(\theta_{-})\right) \quad A = \frac{N_{\text{like}} - N_{\text{unlike}}}{N_{\text{like}} + N_{\text{unlike}}} = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\downarrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\downarrow\downarrow)}$

- Can be measured from dilepton $\Delta \phi_{\parallel}$, or observables involving $\cos \theta_{i}$
 - $\Delta \phi_{\parallel}$ is straightforward to measure precisely
 - cosθ_i requires full event reconstruction (dilepton or I+jets events)

- Dilepton $\Delta \phi_{\parallel}$ measured by both experiments with 'standard' dilepton selections
 - ATLAS: template fit at reconstruction level to MCs with and without spin correlation
 - Fit fraction f_{SM} of SM-correlation template: f_{SM}=1 in SM, proportional to correlation strength
 - CMS: subtract background and unfold reconstructed distribution to particle level
 - Compare with NLO predictions at particle level; quantify by asymmetry $A_{\Delta\varphi}$ about $\varphi=\pi/2$
 - Uncertainties in both cases dominated by tT modelling (particularly top p_T)

New result based on full 20	Source of uncertainty	$\Delta f_{\rm SM}$	
 Dilepton selection (ee,µµ, 	Detector modeling		
More efficient likelihood-l	Lepton reconstruction	± 0.01	
Require ≥1 b-tagged iet:	Jet energy scale	± 0.02	
be reduced from 60 GeV	Jet reconstruction	± 0.01	
	Vield	$E_{ m T}^{ m miss}$	< 0.01
Process	<u>Y leid</u>	Fake leptons	< 0.01
$t\overline{t}$	54000^{+3400}_{-3600}	b-tagging	< 0.01
Z/γ^* +jets	$Z/\gamma^* + jets$ 2800 ± 300 tV (single top) 2600 ± 180		
tV (single top)			± 0.05
$t\overline{t}V$	80 ± 11	MC generator	± 0.03
WW, WZ, ZZ	180 ± 65	Parton shower and fragmentation	± 0.06
Fake Leptons	780 ± 780	ISR/FSR	± 0.06
$\frac{1}{\text{Total non-}t\overline{t}}$	6400 + 860	Underlying event	± 0.04
$E_{\rm respected}(E)$	60000+3500	Color Reconnection	± 0.01
Expected (E)	60000 ₋₃₇₀₀	PDF Uncertainty	± 0.05
Observed (O)	60424	Background	± 0.01
Measure f _{em} from template	fit to $\Delta \phi_{\parallel}$ distribution	MC statistics	± 0.04
Switzer dominated ro	Total systematic uncertainty	± 0.13	
		Data statistics	± 0.05

- Result from template fit:
 - $f_{SM} = 1.20 \pm 0.05 \pm 0.13$
 - Convert to spin correlation strength measurement assuming linear relation: $A_{\text{helicity}}=0.38\pm0.04$
 - Compatible with SM value 0.318±0.005 and 7 TeV measurement 0.37±0.08
- Same measurement used to search for stop-pair decays with t[~]→tX⁰
 - See talk of Till Eifert

- Anomalous tTg interaction from heavy particle with mass M>m_t
 - Parameterise as a chromomagnetic dipole moment CMDM, strength Re(µt)
 - A dimensionless parameter, assumed << 1

- Fit unfolded $\Delta \phi_{\parallel}$ distribution to sum of SM and NP contributions
 - Raw fit: $Re(\mu_t)=0.031\pm0.017$, add bias correction and scale variations on SM part
 - Final result $Re(\mu_t)=0.037\pm0.041$; 95% CL exclusion -0.043 < $Re(\mu_t)$ < 0.117

- Measurement of $\cos\theta_1^*$. $\cos\theta_2^*$ in dileptons requires full event reconstruction
 - Similar techniques to charge asymmetry neutrino weighting, AMWT
 - Again, template fit (ATLAS), unfold to particle level (CMS), angles in helicity basis
 - Dominant systematics from JES, tT radiation modelling, unfolding
 - Spin correlation A can be extracted directly from measured distribution

- ATLAS also measured cos0^{*}₁. cos0^{*}₂ in 'maximal basis' (best for gg fusion)
 - And 'S-ratio', based on matrix elements for like-helicity gg fusion

Convert f_{SM} to spin corr^I A assuming linear relation ($\Delta \phi$,S-ratio) or directly:

-					
-	$\cos(\theta_+)\cos(\theta)_{\text{maximal}}$	$\cos(\theta_+)\cos(\theta)_{\text{helicity}}$	S-ratio	$\Delta \phi(\ell,\ell)$	
	xtraction	direct e	extraction	indirect of	
helicity -0.31	_	$0.23 \pm 0.06 \pm 0.07$	$0.27 \pm 0.03 \pm 0.04$	$0.37 \pm 0.03 \pm 0.06$	$A_{\text{helicity}}^{\text{measured}}$
Amoving SM=0.44	$0.36 \pm 0.06 \pm 0.08$	_	$0.38 \pm 0.05 \pm 0.06$	$0.52 \pm 0.04 \pm 0.08$	$A_{ m maximal}^{ m measured}$
21		ichard Hawkings	R	September 2014	

- $\Delta \phi$ in I+jet events between I from one top and b or d/s (from W \rightarrow qq) from other
 - Spin analysing power for d-type quarks is -0.966, for b quarks -0.393
 - Use most likely permutation from kinematic fit d type quark identified as lower p_T jet (V-A in W decay) or being opposite a moderate b-tag weight c-jet
 - $\Delta \phi(I,b)$ and $\Delta \phi(I,d)$ have similar power due to less reliable identification of d-quark
 - Fit both distributions simultaneously: $f_{SM}=1.12\pm0.11\pm0.22$ (c.f. dilept. $\pm0.09\pm0.18$)

- CMS dilepton analysis also used to measure top quark polarisation
 - Unfold $\cos\theta_{1}^{*}$ distribution (+ and leptons together)
 - No polarisation seen, in agreement with SM
 - Asym. $A_P = 0.005 \pm 0.013 \pm 0.014 \pm 0.016$
 - Polarisation αP=2 A_P
 - Systematics dominated by top p_T modelling

-			
Asymmetry variable	$A_{\Delta\phi}$	$A_{c_1c_2}$	A_P
Jet energy scale	0.002	0.012	0.009
Lepton energy scale	0.001	0.001	0.001
Background	0.003	0.001	0.006
Fact. and renorm. scales	0.001	0.010	0.004
Top-quark mass	0.001	0.003	0.005
Parton distribution functions	0.002	0.002	0.001
Jet energy resolution	< 0.001	< 0.001	< 0.001
Pileup	0.002	0.002	0.004
b-tagging scale factor	< 0.001	< 0.001	0.001
Lepton selection	< 0.001	< 0.001	< 0.001
au decay polarization	0.001	0.002	0.001
Unfolding	0.004	0.020	0.002
Total systematic uncertainty	0.006	0.025	0.014
Top $p_{\rm T}$ reweighting uncertainty	0.012	0.010	0.008

- Polarisation measured in dilepton and I+jets channels using templates
 - Non-zero αP templates generated by reweighting in cosθ*₁ and cosθ*₂ simultaneously to preserve SM spin correlation
 - Separate tests of CP-conserving (same polarisation for top and antitop) and CPviolating (opposite for top and antitop) hypotheses

- Polarisation measurement with CP-violating hypothesis
 - Opposite effects for top and antitop
 - Systematic effects reduced compared to CPC hypothesis, as sources which do not depend on lepton charge tend to cancel out

ATLAS		tt spin correlation measurements				ments
∫ Ldt = 4.6 fb ⁻¹ , √s	= 7 TeV			f _{sm}	± (stat)	± (syst)
$\Delta \phi$ (dilepton)				1.19	± 0.09	± 0.18
Δφ (l+jets)				1.12	± 0.11	± 0.22
S-ratio	⊷			0.87	± 0.11	± 0.14
cos(θ ₊) cos(θ ₋) helicity basis				0.75	± 0.19	± 0.23
cos(θ₊) cos(θ₋) maximal basis		• •		0.83	± 0.14	± 0.18
0	0.5		1	1.5		2
MS dilant	on			Stand	lard mod	el fraction

ATLAS dilepton/I+jets

Channel	$lpha_\ell P_{ m CPC}$	$lpha_\ell P_{ m CPV}$
ee	$0.12\pm0.10^{+0.09}_{-0.12}$	$-0.04\pm0.12^{+0.18}_{-0.12}$
eμ	$-0.07\pm0.04^{+0.05}_{-0.06}$	$0.00\pm0.04^{+0.05}_{-0.04}$
$\mu\mu$	$-0.04\pm0.06^{+0.07}_{-0.07}$	$0.04 \pm 0.07 \substack{+0.06 \\ -0.06}$
Dilepton	$-0.04 \pm 0.03^{+0.05}_{-0.05}$	$0.01 \pm 0.03^{+0.04}_{-0.04}$
e + jets	$-0.031\pm0.028^{+0.043}_{-0.040}$	$0.001 \pm 0.031 ^{+0.019}_{-0.019}$
μ + jets	$-0.033\pm0.021^{+0.039}_{-0.039}$	$0.036 \pm 0.023^{+0.018}_{-0.017}$
ℓ + jets	$-0.034\pm0.017^{+0.038}_{-0.037}$	$0.023 \pm 0.019 ^{+0.012}_{-0.011}$
Combined	$-0.035\pm0.014^{+0.037}_{-0.037}$	$0.020 \pm 0.016^{+0.013}_{-0.017}$

Asymmetry	Data (unfolded)	MC@TNLO	NLO (SM, correlated)	NLO (uncorrelated)
$\begin{array}{c} A_{\Delta\phi} \\ A_{c_1c_2} \\ A_P \end{array}$	$\begin{array}{c} 0.113 \pm 0.010 \pm 0.006 \pm 0.012 \\ -0.021 \pm 0.023 \pm 0.025 \pm 0.010 \\ 0.005 \pm 0.013 \pm 0.014 \pm 0.008 \end{array}$	$\begin{array}{c} 0.110 \pm 0.001 \\ -0.078 \pm 0.001 \\ 0.000 \pm 0.001 \end{array}$	$\begin{array}{c} 0.115\substack{+0.014\\-0.016}\\-0.078\pm0.006\\\ldots\end{array}$	$0.210^{+0.013}_{-0.008}$ 0

Spin correlations observed in LHC tT events @ 7 TeV, >5 σ significance

- No evidence of polarisation, results sensitive at $\pm 2\%$ level on $\alpha P=2A_P$
- Already systematics limited, will have to improve to exploit 8 TeV data
 30th September 2014
 Richard Hawkings

- t-channel single top gives ~100% polarised tops
 - Sensitive test of V-A structure of Wtb coupling
 - Probe by studying cosθ* between lepton and untagged (forward) jet in top rest frame
 - Light quark is ~parallel to top spin direction
- Select events using BDT as for x-sec analysis
 - Sample about 55% pure in t-channel
 - Background, acceptance and resolution effects in reconstructed cosθ* spectrum corrected by unfolding procedure
 - Results compatible with SM expectation
- Measured asymmetry combining e and μ:
 - $A_1=0.41\pm0.06\pm0.16$; polarisation $\alpha P=0.82\pm0.34$
 - Systematics dominated by jet energy/resolution
 - Compatible with SM expectation of ~0.9

- More generally, parameterise Wtb vertex:
 - Vector couplings V(L,R) and tensor g(L,R)
 - In SM, V_L=CKM V_{tb} and others are all zero
 - Can be probed by angular analysis in top decay
- Define a new 'normal' direction N
 - Normal to spectator quark and W boson direction in top quark rest frame
 - $\cos\theta^{N}$ between **N** and lepton in W rest frame
 - Asymmetry in cos0^N sensitive to P.Im(g_R), a CPviolating coupling
- Reconstruct top decay kinematics and unfold
 - $A_{FB}^{N}=0.031\pm0.065\pm0.030$, consistent with 0
 - Systematics dominated by MC modelling
 - Asumming P=0.9, asymmetry translates to limits -0.20< Im(g_R) <0.30 at 95% CL

- Various top quark properties studied in detail at the LHC, mainly 7 TeV data
- tT charge asymmetry in both lepton+jets and dilepton events
 - Measurements reaching ~1% precision, similar to size expected asymmetry in SM
 - No deviations seen, inclusively or differentially excitement at Tevatron is not reproduced
- Top spin correlations in dilepton and lepton+jets events
 - Expected non-zero spin correlations are clearly seen
 - Polarisation measurements achieved ~2% precision, no polarisation observed
 - Measurements systematically limited due to top MC modelling
 - Can this be improved for 8 TeV data?
 - First polarisation-related analyses in single top production
- Still plenty of analyses to come at 8 TeV
 - Can a non-zero A_C value be observed?
 - Large datasets will allow more differential asymmetry measurements hope for some surprises there, or in upcoming 13-14 TeV run

References

- tT charge asymmetry:
 - CMS I+jets 7 TeV: PLB 717 (2012) 129, arXiv:1207.0065
 - CMS dilepton 7 TeV: JHEP 1404 (2014) 191, arXiv:1402.3803
 - CMS I+jets 8 TeV: CMS PAS TOP-12-033
 - ATLAS I+jets 7 TeV: JHEP 1402 (2014) 107, arXiv:1311.6724
 - ATLAS dilepton 7 TeV: to be submitted to JHEP
 - 7 TeV I+jet combination: ATLAS-CONF-2014-012, CMS PAS TOP-14-006
 - LHCb b-bbar charge asymmetry: PRL 113 (2014) 082003, arXiv:1406.4789
- Spin correlations and polarisation:
 - CMS dilepton 7 TeV: PRL 112 (2014) 182001, arXiv:1311.3924
 - CMS chromomagnetic dipole moment: CMS PAS TOP-14-005
 - CMS polarisation in single top: CMS PAS TOP-13-001
 - ATLAS spin-corl 7 TeV: submitted to PRD, arXiv:1407.4314
 - ATLAS spin corl-8 TeV: ATLAS-CONF-2014-056
 - ATLAS polarisation 7 TeV: PRL 111 (2013) 232002, arXiv:1307.6511
 - ATLAS CP-violation in single top: ATLAS-CONF-2013-032

Additional slides

- Results from 7 and 8 TeV measurements vs |y(tT)|, p_T(tT), m(tT)
 - For differential measurements, consider migration in $\Delta|y|$ and m(tT), p_T(tT) y(tT)
 - Results compared to NLO and BSM effective theory with an anomalous axial-vector gluon coupling (EAG) with scale 1 or 1.5 TeV
 - Results from 8 TeV vs. |y(tT)| and m(tT) shown here:

- Results from 7 TeV vs. |y(tT)|, $p_T(tT)$ and m(tT), m(tT) with $\beta_z > 0.6$
 - Compared to NLO+EW (SM) and heavy axigluon s-channel, tuned to Tevatron
 - Results for m(tT) and m(tT) with $\beta_z > 0.6$ shown:

- ATLAS shows comparison of results with predictions from BSM models
 - Left plot includes CMS 7TeV result, right plot is for m(tT)>600 GeV

[GeV⁻¹]

- CMS spin-corl/polarisation measurements quotes extra uncertainty due to top p_T
 - Measurements in 7 TeV I+jets and dilepton events show softer distribution in data than MC@NLO and Madgraph
 - -1b Reweighting simulation improves modelling of lepton and jet p_T distributions
 - Also affects the m(tT) distribution and hence the tT spin correlation
 - Fraction of events with (anti-) parallel spin depends on m(tT)
 - Simulation is used only for unfolding, but this still induces a substantial uncertainty
 - Full effect of reweighting is taken as uncertainty

Eur. Phys. J. C73 2339 (2013)