Missing top properties

J.A.Aguilar-Saavedra

University of Granada

TOP 2014, GannesMandelieu, September 30th 2014

Missing top properties?

Focus not on what you already know from TOP ≤ 2013 but on what you may not know [yet no claim this is all new and revolutionary, ok?]

The anomalous $A_{F B}$ at Tevatron - not settled despite claims - has fostered the study of top properties.

Discuss observables which are simple and interesting [sensitive to new physics] but have not been yet measured.

O framework
Outlook:
O top polarisation at Tevatron
O top polarisation at LHC
$A_{F B} / A_{C}$ not explicitly covered but will always be around

Production and decay of top quarks

The top is not stable but decays. The full matrix element contains a top propagator. Since the top is a narrow resonance $\left[\Gamma / m_{t} \ll 1\right]$, the amplitude can decomposed into production \times decay.

$$
\frac{\not p+m_{t}}{p^{2}-m_{t}^{2}+i \Gamma_{t} m_{t}} \longrightarrow \frac{\pi}{\Gamma_{t} m_{t}} \delta\left(p^{2}-m_{t}^{2}\right) \sum_{\lambda} u(p, \lambda) \bar{u}(p, \lambda)
$$

Therefore, the squared matrix element [and the differential cross section] can be written as

$$
\rho=\frac{1}{2}\left(\begin{array}{cc}
1+P_{z} & P_{x}-i P_{y} \\
P_{x}+i P_{y} & 1-P_{z}
\end{array}\right) \quad \begin{aligned}
& \text { General form for a spin } \mathrm{I} / 2 \\
& \text { particle, with } P_{i}=2\left\langle\mathrm{~S}_{\mathrm{i}}\right\rangle
\end{aligned}
$$

By introducing ρ we are "ignoring" on purpose the details of the top production process. This applies to tops produced singly, in pairs, from a black hole, etc.

Here, we are taking the z direction as the top momentum in the CM frame [helicity].

As it is clear, we can measure not only $\left\langle S_{z}\right\rangle$ but also $\left\langle S_{x}\right\rangle$ and $\left\langle S_{y}\right\rangle$.
Obviously, to do that we must further specify the reference system, not only the z direction.

Similar thing already proposed and measured for W decays.

$T o p=$ tau! 16 years back, the same was done at LEP.

30 April 1998

PHYSICS LETTERS B
Physics Letters B 426 (1998) 207-216 \qquad

Measurement of the weak dipole moments of the τ lepton

L3 Collaboration

M. Acciarri ${ }^{\text {aa }}$, O. Adriani ${ }^{\text {p }}$, M. Aguilar-Benitez ${ }^{\text {z }}$, S. Ahlen ${ }^{\text {k }}$, J. Alcaraz ${ }^{\text { }}$, G. Alemanni ${ }^{\mathrm{v}}$, J. Allaby ${ }^{\mathrm{q}}$, A. Aloisio ${ }^{\text {ac }}$, M.G. Alviggi ${ }^{\text {ac }}$, G. Ambrosi ${ }^{\text {s }}$, H. Anderhub ${ }^{\text {aw }}$, V.P. Andreev ${ }^{\text {al }}$, T. Angelescu ${ }^{\text {m }}$, F. Anselmo ${ }^{\text {i }}$, A. Arefiev ${ }^{\text {ab }}$,
 Sw. Banerjee ${ }^{j}$, K. Banicz ${ }^{\text {at }}$, A. Barczyk ${ }^{\text {aw,au }}$, R. Barillère ${ }^{q}$, L. Barone ${ }^{\text {ak }}$, P. Bartalini ${ }^{\text {ah }}$, A. Baschirotto ${ }^{\text {aa }}$, M. Basile ${ }^{\text {i }}$, R. Battiston ${ }^{\text {ah }}$, A. Bay ${ }^{\text {v }}$, F. Becattini ${ }^{\text {p }}$ U. Becker ${ }^{0}$, F. Behner ${ }^{\text {aw }}$, J. Berdugo ${ }^{\text {z }}$, P. Berges ${ }^{\circ}$, B. Bertucci ${ }^{\text {ah }}$, B.L. Betev ${ }^{\text {aw }}$, S. Bhattacharya ${ }^{\text {j }}$, M. Biasini ${ }^{\text {q }}$, A. Biland ${ }^{\text {aw }}$, G.M. Bilei ${ }^{\text {ah }}$, JJ. Blaising ${ }^{\text {d }}$,
S.C. Blyth ${ }^{\text {ai }}$, G.J. Bobbink ${ }^{\text {b }}$, R. Bock ${ }^{\text {a }}$, A. Böhm ${ }^{\text {a }}$, L. Boldizsar ${ }^{\text {n }}$, B. Borgia ${ }^{\text {ak }}$,
D. Bourilkov ${ }^{\text {aw }}$, M. Bourquin ${ }^{\text {s }}$, D. Boutigny ${ }^{\text {d }}$, S. Braccini ${ }^{\text {s }}$, J.G. Branson ${ }^{\text {an }}$,
V. Brigljevic ${ }^{\text {aw }}$, I.C. Brock ${ }^{\text {ai }}$, A. Buffini ${ }^{\text {P }}$, A. Buijs ${ }^{\text {as }}$, J.D. Burger ${ }^{\circ}$, W.J. Burger ${ }^{\text {s }}$,
J. Busenitz ${ }^{\text {ar }}$, X.D. Cai ${ }^{\circ}$, M. Campanelli ${ }^{\text {aw }}$, M. Capell ${ }^{\circ}$, G. Cara Romeo ${ }^{\text { }}$,
G. Carlino ${ }^{\text {ac }}$, A.M. Cartacci ${ }^{\text {p }}$, J. Casaus ${ }^{\text {z }}$, G. Castellini ${ }^{\text {p }}$, F. Cavallari ${ }^{\text {ak }}$,
N. Cavallo ${ }^{\text {ac }}$, C. Cecchi ${ }^{\text {s }}$, M. Cerrada ${ }^{\text {z }}$,F. Cesaroni ${ }^{\text {w }}$, M. Chamizo ${ }^{\text {z }}$, Y.H. Chang ${ }^{\text {ay }}$, U.K. Chaturvedi ${ }^{\text {r }}$, S.V. Chekanov ${ }^{\text {ae }}$, M. Chemarin ${ }^{\mathrm{y}}$, A. Chen ${ }^{\text {ay }}$, G. Chen ${ }^{\text {g }}$, G.M. Chen ${ }^{\text {g }}$, H.F. Chen ${ }^{\mathrm{t}}$, H.S. Chen ${ }^{\mathrm{g}}$, M. Chen ${ }^{\circ}$, G. Chiefari ${ }^{\text {ac }}$, C.Y. Chien ${ }^{\mathrm{e}}$, L. Cifarelli ${ }^{\text {am }}$, F. Cindolo ${ }^{\mathrm{i}}$, C. Civinini ${ }^{\mathrm{p}}$, I. Clare ${ }^{\circ}$, R. Clare ${ }^{\mathrm{o}}$, H.O. Cohn ${ }^{\text {af }}$, G. Coignet ${ }^{\text {d }}$, A.P. Colijn ${ }^{\text {b }}$, N. Colino ${ }^{\mathrm{z}}$, S. Costantini ${ }^{\text {h }}$, F. Cotorobai ${ }^{m}$, B. de la Cruz ${ }^{\text {z }}$, A. Csilling ${ }^{\text {n }}$, T.S. Dai ${ }^{\circ}$, R. D’Alessandro ${ }^{\mathrm{p}}$, R. de Asmundis ${ }^{\text {ac }}$, A. Degré ${ }^{\text {d }}$, K. Deiters ${ }^{\text {au }}$, P. Denes ${ }^{\text {aj }}$, F. DeNotaristefani ${ }^{\text {ak }}$, D. DiBitonto ${ }^{\text {ar }}, \mathrm{M}$. Diemoz $^{\text {ak }}$, D. van Dierendonck ${ }^{\mathrm{b}}, \mathrm{F}$. Di Lodovico ${ }^{\text {aw }}$, C. Dionisi ${ }^{\text {ak }}$, M. Dittmar ${ }^{\text {aw }}$, A. Dominguez ${ }^{\text {an }}$, A. Doria ${ }^{\text {ac }}$, M.T. Dova ${ }^{\mathrm{r}, 1}$, E. Drago ${ }^{\text {ac }}$, D. Duchesneau ${ }^{\text {d }}$, P. Duinker ${ }^{\text {b }}$, I. Duran ${ }^{\text {ao }}$, S. Dutta ${ }^{\text {j }}$, S. Easo ${ }^{\text {ah }}$, Yu. Efremenko ${ }^{\text {af }}$, H. El Mamouni ${ }^{y}$, A. Engler ${ }^{\text {ai }}$, F.J. Eppling ${ }^{\circ}$, F.C. Erné ${ }^{\text {b }}$, J.P. Ernenwein ${ }^{y}$, P. Extermann ${ }^{\text {s }}$, M. Fabre ${ }^{\text {au }}$, R. Faccini ${ }^{\text {ak }}$, S. Falciano ${ }^{\text {ak }}$, A. Favara ${ }^{\text {p }}$, J. Fay ${ }^{\text {y }}$, O. Fedin ${ }^{\text {al }}$, M. Felcini ${ }^{\text {aw }}$, B. Fenyi ${ }^{\text {ar }}$, T. Ferguson ${ }^{\text {ai }}$,

[^0]0370-2693/98/\$19.00 © 1998 Elsevier Science B V. All rights reserved.
PII S0370-2693(98)00290-1

Fig. 1. Reference system used in this analysis. The z axis points in the τ flight direction and the x axis is fixed by the plane containing the τ and the electron flight directions.

Measuring top polarisation

As always, one can use the charged lepton momentum in the top quark rest frame.

$$
\frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{\ell} d \varphi_{\ell}}=\frac{1}{4 \pi}\left(1+P_{z} \cos \theta_{\ell}+P_{x} \sin \theta_{\ell} \cos \varphi_{\ell}+P_{y} \sin \theta_{\ell} \sin \varphi_{\ell}\right)
$$

Alternatively,

$$
\begin{aligned}
& \frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{x}}=\frac{1}{2}\left(1+P_{x} \cos \theta_{x}\right) \\
& \frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{y}}=\frac{1}{2}\left(1+P_{y} \cos \theta_{y}\right)
\end{aligned}
$$

It may be more convenient experimentally to reduce 2D to ID measurements and clearly no information is lost.

Warning!

We have been speaking about expectation values of spin operators.
Nowhere have I mentioned such thing as that top quarks are produced with a definite helicity [spin].

Saying that a top quark is produced with a definite helicity is in general incorrect: the differential cross section does not factorise into production \times decay of helicity states.

$$
(\cdot \cdot)_{\lambda^{\prime}}\left(\begin{array}{cc}
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right)_{\lambda^{\prime} \lambda}\binom{\cdot}{\cdot}_{\lambda} \neq(\cdot \cdot)_{\lambda^{\prime}}\left(\begin{array}{ll}
\cdot & 0 \\
0 & \cdot
\end{array}\right)_{\lambda^{\prime} \lambda}\binom{\cdot}{\cdot}_{\lambda}
$$

We are not performing a Stern-Gerlach-like experiment on top quarks to force them into helicity eigenstates [before they decay].

However, we often see mentions to top spin, for example:

The angles $\theta_{X}, \theta_{\bar{X}^{\prime}}$ are measured using as spin axis the parent top (anti)quark momentum in the $t \bar{t} \mathrm{CM}$ system. The factor

$$
C \equiv \frac{\sigma\left(t_{\mathrm{R}} \bar{t}_{\mathrm{R}}\right)+\sigma\left(t_{\mathrm{L}} \bar{t}_{\mathrm{L}}\right)-\sigma\left(t_{\mathrm{R}} \bar{t}_{\mathrm{L}}\right)-\sigma\left(t_{\mathrm{L}} \bar{t}_{\mathrm{R}}\right)}{\sigma\left(t_{\mathrm{R}} \bar{t}_{\mathrm{R}}\right)+\sigma\left(t_{\mathrm{L}} \bar{t}_{\mathrm{L}}\right)+\sigma\left(t_{\mathrm{R}} \bar{t}_{\mathrm{L}}\right)+\sigma\left(t_{\mathrm{L}} \bar{t}_{\mathrm{R}}\right)}
$$

is the relative number of like helicity minus opposite helicity $t \bar{t}$ pairs, and measures the spin correlation between the
$C \mathbb{X}=\frac{N_{\text {like }}-N_{\text {unlike }}}{N_{\text {like }}+N_{\text {unlike }}}=\frac{N(\uparrow \uparrow)+N(\downarrow \downarrow)-N(\uparrow \downarrow)-N(\downarrow \uparrow)}{N(\uparrow \uparrow)+N(\downarrow \downarrow)+N(\uparrow \downarrow)+N(\downarrow \uparrow)}$,
where $N_{\text {like }}=N(\uparrow \uparrow)+N(\downarrow \downarrow)$ is the number of events where the top quark and top antiquark spins are parallel, and $N_{\text {unlike }}=N(\uparrow \downarrow)+N(\downarrow \uparrow)$ is the number of events where they are anti-parallel. The strength of the spin correlation is defined by

Given the previous remarks, several questions arise:
O Speaking about "parallel spins" or "like helicity" makes sense at all? Or should I withdraw my paper from EPJC?

O If it does in some sense, are we measuring what it is written?
O Ok, imagine we are, then why?

Notice that the same questions / concerns apply to W helicity fractions. The W bosons are not produced on shell and their spin is not measured.

Does it make sense?

Of course, one can always calculate C pretending that the top spin is measured. As if tops were electrons.
just use your Feynman rules for tops as external particles

Then, the problem comes to whether the experimental measurement with decaying tops whose spins are not measured, correspond to this C.

Are we measuring what is written? Why?

The measurement corresponds to the theoretical calculation for on-shell stable tops when you measure C using

$$
\begin{equation*}
\frac{1}{\sigma} \frac{d \sigma}{d \cos \left(\theta_{+}\right) d \cos \left(\theta_{-}\right)}=\frac{1}{4}\left(1+\not \subset \alpha_{+} \alpha_{-} \cos \left(\theta_{+}\right) \cos \left(\theta_{-}\right)\right) \tag{2}
\end{equation*}
$$

because the off-diagonal matrix elements [interference $A_{\lambda} A^{*} \lambda^{\prime}$] do not contribute to this distribution

the off-diagonal density matrix terms cancel when integrating over lepton azimuthal angles [slide 7]
and for this observable measured with this distribution the production \times decay interpretation of tops with definite spin is correct.
[sighs of relief here]

Moral from all this

B One has to be especially careful when studying spin.
Being overconfident is dangerous. Spins of particles can be considered classically only under certain conditions.

Bor example, they cannot when computing $A_{F B}^{\prime}$.
B The language used may hide all this for brevity, but one should be aware of all the caveats. Especially when attempting to do something new.
once this is remarked we can proceed with
"missing top properties"

Top pair production at Tevatron

The x direction can be taken in the plane spanned by the top quark momentum and the proton, in CM frame. The y direction is perpendicular to that plane.

The transverse and normal polarisations provide independent probes for new physics.

Example: P_{x} and P_{z} for new colour octet $M=250 \mathrm{GeV}$ with reasonable couplings to generate a FB asymmetry at Tevatron.

A normal polarisation P_{y} requires some nontrivial complex phase in the amplitude.

only $i \varepsilon_{\mu \nu \rho \sigma} s_{t}^{\mu} p_{t}^{\nu} p_{p}^{\rho} p_{t}^{\sigma}$ terms nonzero in $|\mathcal{M}|^{2}$ [$\mathrm{V}-\mathrm{A}$ interference]
and $\operatorname{Re}[i \varepsilon \ldots]=0$ unless there are nontrivial complex phases in the amplitude [interference]:

O complex anomalous couplings $V_{i} V_{j}^{*}$ JAAS \& Santos 'I4 JAAS \& Bernabéu'IO
o large particle widths

Example: wide colour octet $M=420(800) \mathrm{GeV}$ and reasonable couplings

Top pair production at LHC

At the LHC we have two protons, we need to choose between them to build our reference system.

Let us, for example, choose the proton in direction Saint-Genis.

Since the interactions mediating $q \bar{q} \rightarrow t \bar{t}$ do not really care where SaintGenis is, we have [differentially]

$$
\begin{aligned}
P_{x}(\theta) & =-P_{x^{\prime}}(\pi-\theta) \\
P_{y}(\theta) & =-P_{y^{\prime}}(\pi-\theta) \\
P_{z}(\theta) & =P_{z^{\prime}}(\pi-\theta)
\end{aligned}
$$

note that "longitudinal" and "transverse" depend on θ !

so that P_{x} and P_{y} vanish after integration over θ.

This is of course because the quark (antiquark) can come from either proton with equal probability.

Good exercise for students: derive the relations between $P(\theta)$ and $P(\pi-\theta)$ using this fact and the symmetries of the problem.

Possible solutions to yield non-zero P_{x} and P_{y} :
O Include $\operatorname{sign}(\cos \theta)$ in the definition of observables. In other words: integral in forward - integral in backward

Bernreuther, Brandenburg \& Uwer '95 ... Bernreuther \& SI 'I3

O Select among protons based on the momentum of the top pair in the LAB frame [try to guess the quark direction]

Baumgart \& Tweedie 'I3; JAAS ’14

From Tevatron to LHC

LHC 8

[1] $P_{x}=0.0021$
[2] $P_{x}=0.0106$ [0.0186]
[3] $P_{x}=0.0212$
Tevatron

LHC 8
$P_{z}=0.0126$
[I] include sign $(\cos \theta)$
[2] select proton by p_{z} [true proton]
[3] select proton by p_{z} and $\beta>0.6$

Main penalty: large gg fraction

Photon handle for polarisation?

Already proposed for charge asymmetry A_{C}

Azimuthal distributions

A different reference system [call it (u, v, w)] is chosen by with the w axis in the direction of one of the protons [fixed].

The azimuthal distribution of the charged lepton in this reference system depends on P_{u} and P_{v}.

What about P_{x}, P_{y}, P_{z} ?

Azimuthal distributions for the colour octet benchmark

these azimuthal distributions, sensitive to P_{u} and P_{v}, are in fact only sensitive to P_{z} and not to P_{x} nor P_{y}.
[this was clear from the beginning since we don't distinguish protons]

Single top production at LHC

Since long, we know that in the t-channel process the tops have a large polarisation in the spectator quark direction.

But what about other directions?

Of course, P_{x} and P_{y} cannot be very large since $P_{x}^{2}+P_{y}^{2}+P_{z}^{2} \leq 1$

Transverse and normal polarisation in single top t-channel

If the polarisation is so small, why should it be interesting? Because this can easily change with anomalous Wtb couplings!

And how to choose among the two protons? Obvious: follow the jet.

Correct id of the initial quark [parton level] $\begin{aligned} & 95 \% \text { for } t \\ & 90 \% \text { for } \bar{t}\end{aligned}$

Unconclusions

B Oh! But the polarisations you showed are so small...

The benchmark points were chosen just for illustration. P_{x} can be as large as the P_{z} that you have measured. It can be increased with cuts, etc.

Baybe the experimental systematics on these observables are large...

These observables are not radically different from the ones already measured, I expect similar uncertainties in the measurement.

But these predictions change at NLO...
D Does the polarisation depend a lot on the PDFs?

Conclusions

De have been discussing new observables that might be measured

B They provide independent unexplored information on top production go for it now to have the measurement first!

- And this is just the beginning, because we have considered only polarisation, not correlations.

B I'm around and happy to discuss physics - also about the asymmetry.

Extra
Slides

Why is production \times decay correct? More details, please.

Let us describe the decay of an ensemble of top quarks in a S_{z} eigenstate using the helicity formalism.

$$
\begin{aligned}
& A_{M \lambda_{1} \lambda_{2}}=a_{\lambda_{1} \lambda_{2}} D_{M \Lambda}^{\frac{1}{2} *}(\phi, \theta, 0) \\
& D_{m^{\prime} m}^{j}(\alpha, \beta, \gamma) \equiv\left\langle j m^{\prime}\right| e^{-i \alpha J_{z}} e^{-i \beta J_{y}} e^{-i \gamma J_{z}}|j m\rangle
\end{aligned}
$$

$M=$ top S_{z} eigenvalue
$\lambda_{1}=W$ helicity $\lambda_{2}=b$ helicity
$\Lambda=\lambda_{1}-\lambda_{2}$
θ, φ : spherical coordinates of the W 3 -momentum in this reference system. The b quark moves in the opposite direction.

The [leptonic] decay of the W can be described in a similar fashion introducing a $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ coordinate system in the W rest frame

$$
A_{m \lambda_{3} \lambda_{4}}=b_{\lambda_{3} \lambda_{4}} D_{m \lambda}^{1 *}\left(\phi^{*}, \theta^{*}, 0\right)
$$

$$
\begin{aligned}
& m=W S_{z} \text { eigenvalue } \\
& \lambda_{3}=I^{+} \text {helicity } \lambda_{4}=v \text { helicity } \\
& \lambda=\lambda_{3}-\lambda_{4}
\end{aligned}
$$

θ^{*}, φ^{*} : spherical coordinates of the I^{+} 3-momentum in this reference system.

Now, the decay chain can be connected by choosing z^{\prime} precisely in the direction of \vec{p}_{W}, so that $m=\lambda_{\text {I }}$

Then, the differential decay width looks as terrible as

[we have assumed that W decay is SM-like to simplify the expression]
Notice we have not forgotten our quantum-mechanics course:
O we are summing over top $S_{z}\left[M, M^{\prime}\right]$ at the amplitude level
O we are summing over possible helicities of intermediate $W\left[\lambda_{I}, \lambda_{I}{ }^{\prime}\right]$ at the amplitude level

The integration over azimuthal angles is easy since $J_{z}|j m\rangle=m|j m\rangle$

$$
\begin{aligned}
D_{m^{\prime} m}^{j}(\alpha, \beta, \gamma) & =\left\langle j m^{\prime}\right| e^{-i \alpha J_{z}} e^{-i \beta J_{y}} e^{-i \gamma J_{z}}|j m\rangle=e^{-i \alpha m^{\prime}} e^{-i \gamma m}\left\langle j m^{\prime}\right| e^{-i \beta J_{y}}|j m\rangle \\
& \equiv e^{-i \alpha m^{\prime}} e^{-i \gamma m} d_{m^{\prime} m}^{j}(\beta)
\end{aligned}
$$

By integrating over ϕ, ϕ^{*} we have erased all quantum interference effects!
And the result is

$$
\frac{d \Gamma}{d \cos \theta d \cos \theta^{*}}=4 \pi^{2} C\left|b_{\lambda_{3} \lambda_{4}}\right|^{2} \sum_{M \lambda_{1} \lambda_{2}} \rho_{M M}\left|a_{\lambda_{1} \lambda_{2}}\right|^{2}\left[d_{M \lambda}^{\frac{1}{2}}(\theta) d_{\lambda_{1} \lambda}^{1}\left(\theta^{*}\right)\right]^{2}
$$

In the case of C it is more complicated but essentially equivalent: integrating over φ_{l} eliminates dependence on P_{x} and P_{y}

Nice! Where can I get these d's?

40. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS
Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15 \mathrm{read}-\sqrt{8 / 15}$.

$\begin{array}{rrr}1 / 2 \times 1 / 2 &$1 +1 $+1 / 2+1 / 2$ 1\end{array}	10
	$0 \quad 0$
(1)$+1 / 2$ $-1 / 2$ $1 / 2$ $1 / 2$ 1 $-1 / 2$ $+1 / 2$ $1 / 2$ $-1 / 2$ -1	
	-1/2-1/2 1

$$
\begin{array}{r|r|r|}
\hline 1 \times 1 / 2 & 3 / 2 & \\
\cline { 2 - 3 } & +3 / 2 & 3 / 2 \\
\hline 1 / 2 & 1 / 2 \\
\hline+1+1 / 2 & 1 & +1 / 2+1 / 2 \\
\hline
\end{array}
$$

$$
\begin{array}{|r|rr|rr|}
\hline+1 & -1 / 2 & 1 / 3 & 2 / 3 & 3 / 2 \\
0+1 / 2 & 1 / 2 \\
0+1 / 3 & -1 / 3 & -1 / 2 & -1 / 2 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
3 / 2 \\
-3 / 2 \\
\hline 1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& Y_{1}^{1}=-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
& Y_{2}^{0}=\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
& Y_{2}^{1}=-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
& Y_{2}^{2}=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi}
\end{aligned}
$$

$d_{1,1}^{1}=\frac{1+\cos \theta}{2}$
$d_{1,0}^{1}=-\frac{\sin \theta}{\sqrt{2}}$
$d_{1,-1}^{1}=\frac{1-\cos \theta}{2}$

Warning!

Observables involving top decay products in general do depend on the interference. Example: A^{\prime} FB at Tevatron [interference missed in Berger et al. 'I2 ${ }^{\text {' }} 13$]
continuous variation of the chirality of the octet coupling to top
$\mathrm{A} \rightarrow \mathrm{R} \rightarrow \mathrm{V} \rightarrow \mathrm{L} \rightarrow \ldots$

[^0]: ${ }^{1}$ Also surported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina

