WbWb at NLO

"NLO QCD corrections to WbW \bar{b} production: new developments and new issues".

Jan Winter

jwinter@mpp.mpg.de

Max Planck Institute for Physics

Munich

Why are we interested in WbWb predictions.

In the experiment we do not measure tops. We only have a handle on their decay products. WbWb is therefore the more realistic final state if you are interested in transformed to the transformation.

 $\sim\,$ quantum mechanical versus semi-classical treatment $\,\sim\,$

- important contributions to Wt and WW final states (tricky to disentangle at higher orders)
 - important background to BSM searches and SM measurements (e.g. population of N-jet bins in WW production)

• at current precision, we start worrying about offshell effects, non-factorizable corrections, b-mass dependence etc.

• expect small ($O(\Gamma_t/m_t)$) effects (wrt NWA) for inclusive tr observables \rightarrow similar statements for more exclusive phase spaces?

(see Frank Krauss' and Fabrizio Caola's talks given earlier today)

Jan Winter

NLO QCD corrections to WWbb production

[TOP2014 – sunny Cannes Mandelieu]

Jan Winter

- MPP Munich, Germany -

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- → Discussion of several recent results.
 - WWbb at NLO in QCD general remarks.
 - Finite b-quark masses $WWb\bar{b}$ in the 4-flavour scheme.
- Predicting the M(lb) distribution and consequences.
- Summary & conclusions.

$WWb\overline{b}$ production at NLO in QCD

Some introductory remarks on WWbb production at NLO in QCD.

- full NLO treatment includes double-, singleand non-resonant contributions (DR - tt-like) (SR - Wt-like) (NR - VV-like)
- complex-mass scheme
- finite top-quark and W width effects (offshell DR, SR, NR and interferences)
- first done in massless b-quark approximation
 (→ requires two hard b-jets)
 (→ WWbb in 5-flavour scheme)
 [DENNER ET AL. ARXIV:1012.3975, ARXIV:1207.5018]
 [BEVILACQUA ET AL. ARXIV:1012.4230]

• earlier done in NWA ($\Gamma_t \rightarrow 0$ limit) where production and decay factorize (neglected contributions are suppressed by powers of $\Gamma_t/m_t \lesssim 1\%$) [BERNREUTHER, BRANDENBURG, SI, UWER, ARXIV:HEP-PH/0403035] [MELNIKOV, SCHULZE, ARXIV:0907.3090] 1 $\pi \sim c c^2 = c^2$

$$\lim_{\Gamma_t/m_t \to 0} \frac{1}{(p_t^2 - m_t^2)^2 + m_t^2 \Gamma_t^2} = \frac{\pi}{m_t \Gamma_t} \,\delta(p_t^2 - m_t^2)$$

Full calculation versus NWA

- full NLO description of the $WWb\bar{b}$ final state (2 \rightarrow 4 processes)
- non-resonant/-factorizing contributions (quantum interferences)
- NLO effects in top quark decays

- full NLO NWA treatment of $t\bar{t}$ production and top quark decays preserving spin correlations (Factorization: Prod \otimes Dec)
- only DR contributions survive in $\Gamma_t \rightarrow 0$ limit (onshell tops)
- NLO effects in top quark decays
- Comparison between both calculations (in the $\ell\ell$ channel) to investigate finite top-quark width effects.
- No more than 1% deviations for inclusive cross sections (with experimental cuts).
- Effects can be (significantly) larger in differential distributions.

 \Rightarrow [Denner, Dittmaier, Kallweit, Pozzorini, Schulze, LesHouches2011, arXiv:1203.6803]

Full calculation versus NWA

• Effects can be (significantly) larger in differential distributions.

 \Rightarrow [Denner, Dittmaier, Kallweit, Pozzorini, Schulze, LesHouches2011, arXiv:1203.6803]

Full calculation versus NWA

• Effects can be (significantly) larger in differential distributions.

 \Rightarrow [Denner, Dittmaier, Kallweit, Pozzorini, Schulze, LesHouches2011, arXiv:1203.6803]

$WWb\overline{b}$ production at NLO: massive b-quarks

New development: bottom quark mass included in the calculation.

- full NLO treatment includes double-, singleand non-resonant contributions
- complex-mass scheme
- finite top-quark and W width effects
- first done in massless b-quark approximation [DENNER ET AL. ARXIV:1012.3975, ARXIV:1207.5018]
 [BEVILACQUA ET AL. ARXIV:1012.4230]
- earlier done in NWA where production and decay factorize (neglected contributions are suppressed by powers of $\Gamma_t/m_t \lesssim 1\%$) [BERNREUTHER ET AL. ARXIV:HEP-PH/0403035] [MELNIKOV, SCHULZE, ARXIV:0907.3090]
- off-shell and single-top contributions more important in phase-space regions with unresolved b-quarks
- only accessible in calculations with massive b-quarks in the 4-flavour (4F) scheme
- in the 4F, fully differential NLO description of both FS b-jets \rightarrow permits application of jet vetoes
- ullet \to gauge-invariant separation of narrow-top-width contribution and finite-width remainder
- results provided recently by two groups:

[FREDERIX, ARXIV:1311.4893] [CASCIOLI, KALLWEIT, MAIERHÖFER, POZZORINI, ARXIV:1312.0546]

Jan Winter

Calculation performed within MadGraph5 aMC@NLO framework.

[FREDERIX, ARXIV:1311.4893]

- top-quark induced backgrounds in $h \to WW^{(*)} \to ll \nu \nu$ channel at 8 TeV LHC $(\mu_{\rm R,F} = \hat{H}_T/2)$
- "Higgs measurement" cuts in one-jet bin motivated by ATLAS analysis

• (left) azimuthal angle separation between leptons, (right) Higgs boson transverse mass Higgs boson topology cuts: $m_{ll} < 50$ GeV and $|\Delta \phi_{ll}| < 1.8$

$WWb\overline{b}$ production at NLO

• OpenLoops + Collier + New in-house NLO MC framework.

[CASCIOLI ET AL. ARXIV:1312.0546] [KALLWEIT]

- 4F scheme enables gauge-invariant tt/non-tt separation instead of ill-defined tt/Wt separation in 5F
- dynamical scale interpolating between $t\bar{t}$ ($\mu_{t\bar{t}}^2 = E_{T,t}E_{T,\bar{t}}$) and single-t ($\mu_{tW^-}^2 = E_{T,t}E_{T,\bar{b}}$) ...
- ... to account for multiscale problem

$$d\sigma_{t\bar{t}} = \lim_{\Gamma_t \to 0} \left(\frac{\Gamma_t}{\Gamma_t^{\text{phys}}}\right)^2 d\sigma_{WWb\bar{b}}(\Gamma_t)$$

• numerical extrapolation to $\Gamma_t \rightarrow 0$: Wt contribution dominates finite top-quark width remainder

Jan Winter

• OpenLoops + Collier + New in-house NLO MC framework.

[CASCIOLI ET AL. ARXIV:1312.0546] [KALLWEIT]

- Controlling the $t\bar{t}$ background in WW NLO and finite top quark width effects in jet bins
- dynamical scale interpolating between $t\bar{t} \ (\mu_{t\bar{t}}^2 = E_{T,t}E_{T,\bar{t}})$ and single- $t \ (\mu_{tW^-}^2 = E_{T,t}E_{T,\bar{b}})$

- very interesting application of finite b-mass calculation
- the 40% inclusive NLO correction is driven by the large two-jet bin correction
- strongly enhanced finite top quark width effects in zero- and one-jet bins

Jan Winter

• OpenLoops + Collier + new in-house NLO MC framework.

[CASCIOLI ET AL. ARXIV:1312.0546]

- dynamical scale interpolating between $t\bar{t}$ $(\mu_{t\bar{t}}^2 = E_{T,t}E_{T,\bar{t}})$ and single-t $(\mu_{tW^-}^2 = E_{T,t}E_{T,\bar{b}})$
- xsec scale uncertainties of 10-15% (similar for $\mu_0=m_t$), 6% due to finite-t-width corrections

ullet cross section in exclusive zero- and one-jet bins as a function of jet p_T threshold

• OpenLoops + Collier + new in-house NLO MC framework.

[CASCIOLI ET AL. ARXIV:1312.0546]

- dynamical scale interpolating between $t\bar{t} \ (\mu_{t\bar{t}}^2 = E_{T,t}E_{T,\bar{t}})$ and single- $t \ (\mu_{tW^-}^2 = E_{T,t}E_{T,\bar{b}})$
- xsec scale uncertainties of 10-15% (similar for $\mu_0=m_t$), 6% due to finite-t-width corrections

ullet cross section in exclusive zero- and one-jet bins as a function of jet p_T threshold

• (right) azimuthal angle between leptons (0-jet), finite-t-width effects increase with harsher vetoes

Top quark mass measurements

• first LHC+Tevatron result; total uncertainty on top quark mass < 1 GeV for combinations.

Rich and active experimental program (various complementary techniques).

Top quark mass measurements

• first LHC+Tevatron result; total uncertainty on top quark mass < 1 GeV for combinations.

Rich and active experimental program (various complementary techniques).

Jan Winter

Top quark mass determination using the m_{lb} method

Parametrize "your" theory (m_{lb} predictions).

- Full QCD NLO prediction for $W^+W^-b\bar{b}$ in dilepton channel: m_{lb} distribution is sensitive to top quark mass.
- ATLAS uses one-dim. template method to determine m_t . Theory uncertainty has been estimated to 0.8 GeV.
- \rightarrow Verify size of th. uncertainties using more advanced calc's!

 10^{-2}

 10^{-3}

LHC 7 TeV

 $\mu_R = \mu_F = \hat{H}_T/2$ MSTW2008(n)lo pdf

$WWb\overline{b}$ production at NLO

Our parton level calculations ...

- full NLO treatment includes double-, singleand non-resonant contributions
- complex-mass scheme
- finite top-quark and W width effects
- first done in massless b-quark approximation [DENNER ET AL. ARXIV:1012.3975, ARXIV:1207.5018]
 [BEVILACQUA ET AL. ARXIV:1012.4230]
- earlier done in NWA where production and decay factorize (neglected contributions are suppressed by powers of $\Gamma_t/m_t \lesssim 1\%$) [BERNREUTHER ET AL. ARXIV:HEP-PH/0403035] [MELNIKOV, SCHULZE, ARXIV:0907.3090]
- use the GoSam+Sherpa combined generator package (current versions, GoSam 2.0 and Sherpa 2.1).
- Sherpa for calculating Born, real corrections and infrared subtractions [GLEISBERG ET AL, ARXIV:0811.4622]
- GoSam for calculating virtual corrections [CULLEN, VANDEURZEN, GREINER, HEINRICH ET AL, ARXIV:1404.7096]
- 5-flavour scheme, massless b-quarks, two resonant W decaying leptonically @ LO respecting spin correlations

Full versus factorized approach

full (WWbb)

- full NLO description of the $WWb\bar{b}$ final state $(2 \rightarrow 4 \text{ processes})$
- accounts for non-resonant/non-factorizing contributions, includes NLO effects in top quark decays

factorized $(t\bar{t})$

- NLO tt
 t
 i production (2 → 2 processes)

 with LO decays attached and spin
 correlations preserved
- standard description for the NLO core in NLO+PS matching
- Use these calculations for pure parton level analyses, i.e. m_t is not a MC mass here, it is the pole mass.

Jan Winter

The m_{lb} distribution at NLO and scale variations

Parton-level NLO calculations for $W^+W^-b\overline{b}$ based on GoSam+Sherpa framework.

(full & factorized calc., 5-flavour scheme, massless b-quarks, two resonant W decaying leptonically @ LO)

• Important NLO corrections to the shape of m_{lb}

 Values of m_{lb} larger than $\sqrt{m_t^2 - m_W^2}$ are kinematically forbidden in narrow width approximation at LO

• follow ATLAS strategy: use charged-lepton b-jet pairing minimizing sum of both m_{lb} and average. Jan Winter Cannes, September 29, 2014 – p.15

Qualitative comparison of m_{lb} predictions

[DENNER, DITTMAIER, KALLWEIT, POZZORINI, ARXIV:1207.5018]

- WWbb: NLO corrections strongly affect the shape of m_{lb}
- similar features \rightarrow agreement on qualitative level only, noting the differences however:
- different LHC energies & kinematical constraints (cuts), slightly different observable (a truth m_{lb})
- different dynamical scale choice (transverse mass of tops)
- $\bullet\,$ non-resonant and off-shell effects due to finite W boson width
- different treatment of b-quark initial states

Normalized m_{lb} : scale versus m_t variation

- shape modifications resulting from variation of scales by factors of two
- left panel, for the full approach \rightarrow visible right panel, for the factorized approach \rightarrow only in tails

Normalized m_{lb} : scale versus m_t variation

- shape modifications resulting from variation of scales by factors of two
- ullet left panel, for the full approach o visible

• right panel, shape changes due to m_t variation @ NLO $(m_t \text{ variation @ LO very similar!})$

- scale factor variation mimics shape changes as induced by different m_t values ightarrow uncertainty
- @NLO: scale down corresponds to lower mass
- fit mass and scale simultaneously, but would resulting choice work for other distributions (eg. $m_{t\bar{t}}$)?

NLO templates vs pseudo-data

Representative examples for full (left) and factorized (right) NLO calculation.

ullet pseudo-data (black points) are generated from the NLO distributions (black histograms) at $m_t^{
m in}$

• fit with NLO templates (parametrization) gives $m_t^{\text{out}} \rightarrow$ best fit to pseudo-data (red line)

NLO templates vs pseudo-data

Representative examples for full (left) and factorized (right) NLO calculation.

• pseudo-data (black points) are generated from the NLO distributions (black histograms) at $m_t^{
m in}$

• fit with NLO templates (parametrization) gives $m_t^{\text{out}} \rightarrow \text{best}$ fit to pseudo-data (red line)

Scale uncertainties and the m_{lb} method

[HEINRICH, MAIER, NISIUS, SCHLENK, WINTER, ARXIV:1312.6659]

Single out effect of NLO scale uncertainties on top mass.

- Use m_{lb} method in a parton-level analysis where we assume that data follows factorized QCD NLO prediction for $t\bar{t}$ with subsequent dilepton decays at LO [pseudo-data].
- Apply/test against the theories given by default scale choice NLO and LO predictions (templates) [hypotheses].

Scale uncertainties and the m_{lb} method

[HEINRICH, MAIER, NISIUS, SCHLENK, WINTER, ARXIV:1312.6659]

 $d\sigma/dm_{lb}[1/GeV]$

 10^{-4}

 $W^+W^-b\bar{b}$: Invariant mass of lepton and b jet

LHC 7 TeV WWbb

MSTW2008(n)lo pdf - NLO, $\mu = 1.0 \times \hat{H}_T/2$

- - NLO, $u = 0.5 \times \hat{H}_T/2$

- LO, $\mu = 0.5 \times \hat{H}_T/2$... LO, $\mu = 2.0 \times \hat{H}_T/2$

NLO, $\mu = 2.0 \times \hat{H}_T / 2$ LO, $\mu = 1.0 \times \hat{H}_T / 2$

Single out effect of NLO scale uncertainties on top mass.

• Use m_{lb} method in a parton-level analysis where we assume that data follows full QCD NLO prediction for dileptonic $W^+W^-b\bar{b}$ [pseudo-data].

Jan Winter

• Apply/test against the theories given by default scale choice NLO and LO predictions (templates) [hypotheses].

Summary

Full (left) vs factorized (right) NLO calculation: results for mass shifts.

• larger shift btwn NLO & LO description ($\sim 1.9~{
m GeV}$) as compared to factorized approach ($\sim 0.5~{
m GeV}$)

• significantly larger uncertainties from scale variations for full approach $\binom{+0.6}{-1.0}$ GeV vs ± 0.2 GeV)

Further remarks.

What about variables other than m_{lb} ?

- \circ recent study concerning the prospects to determine m_t from leptonic observables (dilepton channel) [FRIXIONE, MITOV, ARXIV:1407.2763]
- proposal to exploit the top quark mass dependence of the shape of the $t\bar{t}+1$ -jet invariant mass [ALIOLI, FERNANDEZ, FUSTER, IRLES, MOCH, UWER, VOS, ARXIV:1303.6415]

0 ...

What about NLO+PS matching for WWbb?

- \circ ... to obtain more realistic, i.e. hadron level final states.
- first attempt and results using PowHel
 [GARZELLI, KARDOS, TROCSANYI, ARXIV:1405.5859]
- however, the issue of intermediate resonances has not been addressed. This is an open issue to the MC community.

(Without a proper treatment of intermediate resonances, parton shower effects will distort the (NLO-accurate) Breit–Wigner shape.)

Summary.

Cutting edge parton-level calculations of NLO QCD corrections to WWbb production are available, using modern NLO tools (MG5_aMCNLO, OpenLoops+Sherpa, GoSam+Sherpa, Helac-NLO/PowHel). Realistic, many body final states!!

Comparison with NWA approaches & standard Monte Carlos helps disentangle effects beyond the factorization and assess their relevance for phenomenology (on the inclusive level approximations work well, ...).

The 4-flavour scheme calculations (treating b-quarks as massive partons) give us new insight to the validation of "top-induced" backgrounds.

NLO effects were also studied in the context of the top quark mass measurement based on the m_{lb} template method (well defined framework also for a pure parton level analysis).

Shape uncertainties from scale variations of the full NLO QCD corrections to $WWb\overline{b}$ production result in larger theory errors on this top quark mass determination than expected.

Validation ongoing ... e.g. to separate effects from radiative corrections in decay and finite-width contributions (NLO in the "decay" seems crucial).

Extra notes.

Normalized m_{lb} : shape comparisons & cross-checks

• analysis strongly driven by shape of the distribution (rate comes in only through number of events passing acceptance/analysis cuts)

- left: small effect of different scale choices on normalized distributions
- right: for full NLO WWbb, shape change is drastic while shapes of others are similar

Radiation in the decay

- full NLO description of the $WWb\bar{b}$ final state (2 \rightarrow 4 processes)
- non-resonant/-factorizing contributions,
 NLO effects in top quark decays

- full NLO NWA treatment of $t\bar{t}$ production and top quark decays preserving spin correlations
- comparison will help disentangle effects from NLO decays and non-resonant/-factorizing contributions
- choose different scales in the production and decay ... becomes testable
- to what extent are radiative decay corrections well modelled by shower in NLO+PS (how do we assess the uncertainties related to these shower emissions)

What to expect from showering and hadronization?

- Only **PRELIMINARY** result / illustration. Observation on a qualitative level:
- transition region between peak and tail gets washed out, mainly by parton showering (PS)
- also peak position shifts to the left
- further amplified by hadronization (HAD)

• PS + HAD reduce the top mass sensitivity of m_{lb}

(cannot be neglected but is not dramatic either)

Other observables?

- less sensitive to m_t , but "cleaner" observable \rightarrow better systematics!?
- pay-off comes with more data ...

