New generators (including future developments on EW corrections to top) for the HL-LHC

Stefano Pozzorini

Zurich University

Top2014, Cannes, 2 October 2014

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

My (limited) implementation of the title

A selection of very recent (or ongoing) MC developments and results that will play an important role for top physics at the HL-LHC (but also well before)...

 \ldots focussed on perturbative MC aspects (NLO QCD and EW) and with emphasis on recent $\rm OPENLOOPS$ developments

Outline

1 HL-LHC and MC tools

MC requirements for HL-LHC

NLO automation

EW corrections

- Features of EW corrections
- NLO EW for $pp
 ightarrow t ar{t}$
- NLO EW automation

3 Recent MC progress at NLO QCD in top physics

- $t\bar{t}$ + jets
- 🕨 W W bl

High-luminosity LHC (2025-2035)

- 14 TeV collisions with 150 times more luminosity than Run1 (3000 fb $^{-1}$)
- $\Rightarrow~$ enhanced energy reach, sensitivity to rare processes, precision
- \Rightarrow requires precise MC simulations with reliable uncertainty estimates

In the following: examples of top-related analyses with

- strong sensitivity improvements at HL-LHC
- serious MC challenges

CMS endpoint method [EPJ C 73 (2013)]

- m_t from fit of kinematic endpoints in $m_{\ell b}$, $\mu_{bar{b}}$, $\mu_{\ell\ell}$
- 2 GeV accuracy with 5 fb⁻¹

HL-LHC projections [Snowmass Top WG 2013]

Luminosity	$5fb^{-1}$	$100 f b^{-1}$	$300 f b^{-1}$	$3000 f b^{-1}$
$\Delta m_t^{\mathrm syst}$ [GeV]	1.8	1.0	0.7	0.5
$\Delta m_t^{\mathrm stat}$ [GeV]	0.90	0.10	0.05	0.02
Total	2.0	1.0	0.7	0.5

MC requirements

- percent level shape precision close to (on-shell) endpoints
- \Rightarrow (N)NLO QCD $t\bar{t}$ production×decay with off-shell effects

Measurements of $t\bar{t}V$ couplings [Snowmass 2013]

• factor 4 potential improvement from HL upgrade

$t\bar{t}H$ measurement with 3'000 fb⁻¹ [Snowmass 2013]

$\gamma\gamma$	4ℓ	$\ell \nu \ell \nu$	$\tau \tau$	$b\overline{b}$	$\mu\mu$	$\ell\ell\gamma$	$t\bar{t}H$ events
4.2 K	0.2 K	18 K	115 K	1.1 M	0.4 K	0.2 K	1.8 M

- projected σ_{ttH} accuracy ~ 10%(15%) at 3000 (300) fb⁻¹
- potential λ_{ttH} accuracy $\sim 5\%$

Requires MC precision in multi-particle final states

- for $t\bar{t} + H/W/Z/\gamma$ and $t\bar{t}$ + jets including c- and b-jets
- modeling of QCD emissions and shape uncertainties crucial

Leptons+jets+MET searches at TeV frontier

Many sensitivity improvements at 3000 (300) fb⁻¹ [ATL-PHYS-PUB-2012-001]

 $1.5\,(6.5)\,\%$ sensitivity to anomalous quartic couplings in WW scattering

Huge top backgrounds require

- precise shapes for $m_{t\bar{t}}$, $H_{\rm T}$, $p_{\rm T}$,... in multi-TeV regime
- precise modelling of $t\bar{t}$ + multi-jets and off-shell $t\bar{t}$ regime (e.g. for kinematic top veto)

exclusion up to 6.7 (4.3) TeV for $g_{\rm KK} \rightarrow t\bar{t}$ resonances

S. Pozzorini (Zurich University)

Full exploitation of HL-LHC potential requires

 $\bullet\,$ better than 10% accuracy for fully exclusive top final states

Perturbative precision

- NLO QCD for $2 \rightarrow 4(5)$
- NLO EW for $2 \rightarrow 3(4)$
- NNLO QCD for $2 \rightarrow 2(3)$

Other MC requirements

- top production×decay with off-shell effects
- (N)NLO matching and merging
- higher CPU efficiency

On the wave of the (N)NLO revolution triggered by the advent of the LHC these goals are already partially achieved (this talk) and likely to be widely achieved in 10 years (talk at top2024?).

NLO multi-particle revolution and automation

- various new 1-loop techniques
- many 2 \rightarrow 4(5,6) processes at NLO QCD: 5j, W + 5j, Z + 4j, H + 3j, WWjj, WZjj, $\gamma\gamma$ + 3j, $b\bar{b}b\bar{b}$, $W\gamma\gamma j$, WWb \bar{b} , $t\bar{t}b\bar{b}$, $t\bar{t}jj$, $t\bar{t}t\bar{t}$, $t\bar{t}\gamma\gamma$, ...
- various new 1-loop tools: CutTools, Samurai, Helac-NLO, MadLoop, GoSam, BlackHat, Ninja, NJet, OpenLoops, Collier, Recola

Full automation of NLO and Monte Carlo tools

- IR subtraction, integration, NLO matching and multi-jet merging,...
- tools: Madgraph/aMC@NLO, Powheg/Powhel, Sherpa, Herwig, Pythia

Great potential to promote NLO to standard TH accuracy at LHC

- wide range of NLO simulations possible
- further efficiency improvements crucial for challenging processes
- understanding of underlying physics and TH uncertainties can be non-trivial

Most results in this talk based on **OPENLOOPS** [Cascioli, Maierhöfer, S.P. '12]

S. Pozzorini (Zurich University)

1-loop amplitudes with OpenLoops [Cascioli, Maierhöfer, S.P. '12]

- NLO QCD amplitudes for any $2 \rightarrow 4\,(5)$ SM process
- since September '14 publicly available at openloops.hepforge.org
- fast and generic numerical recursion for "loop-momentum dependent" trees

Complete NLO automation through interface with Monte Carlo Tools

- Sherpa2.1 [Hoeche, Hoeth, Krauss, Schoenherr, Schumann, Siegert, Zapp]
 - \Rightarrow S-MC@NLO matching to SHERPA shower and MEPS@NLO multi-jet merging
- parton-level Monte Carlo by S. Kallweit

 \Rightarrow very fast integration for NLO and NNLO ($q_{\rm T}$ subtraction)

BLHA interfaces to Herwig's MatchBox and other MC tools

Recent results with OpenLoops (Higgs and Top phenomenology)

- NLO for $pp o W^+ W^- b ar{b}$ with $m_b > 0$, [Cascioli, Kallweit, Maierhöfer, S. P., arXiv:1312.0546]
- S–MC@NLO $pp
 ightarrow t ar{t} b ar{b}$ with $m_b > 0$, [Cascioli, Maierhöfer, Moretti, S. P. , Siegert, arXiv:1309.5912]
- MEPS@NLO for <u>llvv+0,1 jets</u>, [Cascioli, Höche, Krauss, Maierhöfer, S. P., Siegert, arXiv:1309.0500]
- NLO merging for $pp \rightarrow HH+0,1$ jets, [Maierhöfer, Papaefstathiou, arXiv:1401.0007]
- MEPS@NLO for $t\bar{t}$ +0,1,2 jets, [Höche, Krauss, Maierhöfer, S. P., Schönherr, Siegert arXiv:1402.6293]
- MEPS@NLO for WWW+0,1 jets, [Höche, Krauss, S. P., Schönherr, Thompson arXiv:1403.7516]
- NNLO for $pp \rightarrow \gamma Z$ production, [Grazzini, Kallweit, Rathlev, Torre, arXiv:1309.7000]
- NNLO for $qar{q}
 ightarrow tar{t}$ production, [Abelof, Gehrmann-de Ridder, Maierhöfer, S.P. , arXiv:1404.6493]
- NNLO for $pp \rightarrow ZZ$ production, [Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, S.P., Rathlev, Tancredi, Weihs, arXiv:1405.2219]
- NNLO for $pp \rightarrow W^+W^-$ production, [Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, S.P., Rathlev, Tancredi arXiv:1408.5243]

Several challenging NLO, S–MC@NLO, MEPS@NLO and NNLO studies thanks to high automation, flexibility and CPU performance

S. Pozzorini (Zurich University)

Outline

HL-LHC and MC tools MC requirements for HL-LH

NLO automation

EW corrections

- Features of EW corrections
- NLO EW for $pp
 ightarrow t\bar{t}$
- NLO EW automation

Recent MC progress at NLO QCD in top physics
 tt

 tt
 + jets
 WWbb

EW Sudakov logarithms I

Virtual EW corrections strongly enhanced by $\ln(\hat{s}/M_W^2)$ at $\hat{s} \sim 1 \text{ TeV}$

 $\mathcal{O}(10\%)$ corrections at 1-loop

 $\mathcal{O}(1\%)$ corrections at 2-loops

$$\begin{pmatrix} \frac{\delta\sigma_1}{\sigma_0} \end{pmatrix}_{\rm LL} \simeq -\frac{\alpha}{\pi s_{\rm w}^2} \log^2 \frac{s}{M_W^2} \simeq -26.4\% \qquad \left(\frac{\delta\sigma_2}{\sigma_0}\right)_{\rm LL} \simeq +\frac{\alpha^2}{2\pi^2 s_{\rm w}^4} \log^4 \frac{s}{M_W^2} \simeq 3.5\%$$

$$\begin{pmatrix} \frac{\delta\sigma_1}{\sigma_0} \end{pmatrix}_{\rm NLL} \simeq +\frac{3\alpha}{\pi s_{\rm w}^2} \log \frac{s}{M_W^2} \simeq +15.6\% \qquad \left(\frac{\delta\sigma_2}{\sigma_0}\right)_{\rm NLL} \simeq -\frac{3\alpha^2}{\pi^2 s_{\rm w}^4} \log^3 \frac{s}{M_W^2} \simeq -4.1\%$$

EW Sudakov logs at HL-LHC

- $\bullet\,$ large negative effects in tails of energy-dependent observables $p_{\rm T}, M_{\rm inv}, \ldots \Rightarrow$ can hide BSM excesses
- size strongly depends on process and kinematic details
 - \Rightarrow strong motivation for full NLO EW predictions (+ higher-order logarithms)

EW Sudakov logarithms II

Originate from soft/collinear virtual EW bosons coupling to on-shell legs

Universality and factorisation [Denner, S.P. '01] similarly as in QCD

$$\delta_{\rm LL+NLL}^{\rm 1-loop} = \frac{\alpha}{4\pi} \sum_{k=1}^n \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^a(k) I^{\bar{a}}(l) \ln^2 \frac{s_{kl}}{M^2} + \gamma^{\rm ew}(k) \ln \frac{s}{M^2} \right\}$$

- process-independent and simple structure
- tedious implementation (ALPGEN [Chiesa et al. '13]) due to nontrivial $SU(2) \times U(1)$ features (P-violation, mixing, soft SU(2) correlations, Goldstone modes, ...)
- 2-loop extension and resummation partially available

Real photon emission

- $\bullet\,$ mandatory since soft/collinear γ unresolved
- cancels QED singularities

Real Z, W emission [Ciafaloni,...]

- not mandatory since Z, W always resolved (in principle)
- even for inclusive case: only partial $\ln(\hat{s}/M_W)$ cancellation
- \leftrightarrow free SU(2) charges, collinear IS logs, kinematic $M_{Z,W}$ effects

W, Z emissions in practice

- free from singularities \Rightarrow trivial LO implementation as separate processes with extra W/Z (different physics!)
- typically modest $\ln(\hat{s}/M_W)$ cancellation (strongly process/observable dependent)

Other physically/technically nontrivial NLO EW features I

Cancellation of FS Photon singularities

- requires IR subtraction method [Catani,Dittmaier,Seymour, Trocsanyi; Frixione, Kunszt, Signer]
- QED–QCD IR interplay requires nontrivial definition of unresolved photons (e.g. $q \rightarrow q\gamma$ fragmentation)
- leptons can receive significant corrections

Cancellation of IS Photon singularities

- requires QED factorisation and PDF evolution [MRST2004, NNPDF2.3]
- γ -induced processes \Rightarrow possible TeV scale enhancements (large uncertainty)

10² M_x (GeV)

Loton - Photon - 1

10²

Other physically/technically nontrivial NLO EW features II

Nontrivial bookkeeping of interference effects e.g. in $q\bar{q} \rightarrow q\bar{q}$ at $\mathcal{O}\left(\alpha_{S}^{2}\alpha\right)$

• EW corrections \times QCD Born

 $\, \bullet \,$ QCD corrections $\times \,$ EW Born

In practice above naive splitting inconsistent

- only complete $\mathcal{O}(\alpha_S^n \alpha^m)$ contribution makes sense (IR finite)
- note that $\mathcal{O}(\alpha)$ corrections can involve emissions of photons and QCD-partons

Other physically/technically nontrivial NLO EW features III

Treatment of unstable particles (e.g. $t \to Wb$ or $W \to \nu \ell$ resonances)

- $W \rightarrow \nu \ell$ trivial at NLO QCD (no corrections)
- but receives nontrivial NLO EW corrections to production × resonance × decay

Option A: complex mass scheme [Denner, Dittmaier]

- exact NLO description
- much higher complexity (one extra leg per $1 \rightarrow 2$ decay; non-factorisable corrections, IR singularities in resonance region)

Option B: narrow-width approximation (production×decay)

- $\mathcal{O}\left(1\%\right)$ uncertainty
- much simpler but requires exact helicity correlations at NLO

Outline

HL-LHC and MC tools
 MC requirements for HL-LHC

NLO automation

EW corrections

- Features of EW corrections
- NLO EW for $pp \to t\bar{t}$
- NLO EW automation

Recent MC progress at NLO QCD in top physics
 tt

 tt

 WWbb

Existing NLO EW results for $t\bar{t}$ I

Existing NLO EW results for top (1994–2013)[Beenakker, Bernreuther, Denner, Hollik Kollar, Kühn, Moretti, Nolten, Pagani, Ross, Scharf, Si, Uwer, Wackeroth]

• thorough results only for $t\bar{t}$, while $t\bar{t} + V$, $t\bar{t} + j$ ets, ... unknown

NLO weak corrections to $pp \rightarrow t\bar{t}$ at 14 TeV [Kühn,Scharf,Uwer '13]

- $\mathcal{O}\left(\alpha\right)$ correction of -2% to $\sigma_{t\bar{t}}$ and Sudakov behaviour at high p_{T}
- different $M_{t\bar{t}}$ behaviour and non-trivial $\Delta y_{t\bar{t}}$ dependence (t-channel peak)
- "only" -12% correction at 1 TeV \leftrightarrow small EW charges in $gg/q\bar{q} \rightarrow t\bar{t}$

Existing NLO EW results for $t\bar{t}$ II

NLO QED corrections [Kollar, Hollik]

- +1% to $\sigma_{t\bar{t}}$ (dominated by γg channel)
- -4% at $p_{\rm T}$ =2 TeV (augments Sudakov weak correction)

EW corrections to charge asymmetry

- $\sim 25\%$ enhancement of $A_{\rm FB}^{t\bar{t}}$ at Tevatron [Hollik, Pagani] and similar effect at LHC [Bernreuther, Si]
- dominated by QED correction to $q\bar{q} \rightarrow t\bar{t}$ asymmetry $R_{QED} = Q_t Q_q \frac{36}{5} \frac{\alpha}{\alpha_S}$

⇒ QED effects can exceed weak ones and should always be included

Real Z, W emission [Baur '06]

- impact of $t\bar{t}V(\rightarrow jj,\nu\bar{\nu})$ wrt $t\bar{t}$ in presence of $t\bar{t}$ cuts
- grows with $p_{\rm T}$ and at 1 TeV reaches +5% (+100%) for semi-leptonic (hadronic) top

"Fake" 100% effect illustrates strong cut-dependence of real Z, W emission
o due to boosted tt̄ suppression from ΔR > 0.4 separation cut between b, j, ℓ
o worthwhile to reinspect (also +5%) using boosted top taggers

Outline

HL-LHC and MC tools MC requirements for HL-LH

NLO automation

EW corrections

- Features of EW corrections
- NLO EW for $pp \to t\bar{t}$
- NLO EW automation

Recent MC progress at NLO QCD in top physics
 tt

 tt

 WWbb

NLO EW automation

Motivation

- NLO EW for $t\bar{t} + V$, $t\bar{t} + jets$, ...
- automated interface within MC frameworks

Technical tasks (tour de force)

- QED emission and subtraction of IR singularities, NLO matching
- bookkeeping of EW–QCD interferences
- 1-loops corrections + rational terms + complete EW renormalisation
 - \Rightarrow higher complexity wrt QCD (all SM particles in the loops)

Ongoing/advanced implementations (diagrammatic/off-shell approaches)

- RECOLA $\Rightarrow \ell^+ \ell^- jj$ NLO EW [Denner,Hofer,Scharf,Uccirati '13]
- $MG5/AMC@NLO \Rightarrow t\bar{t}H NLO weak$ [Frixione,Hirschi,Pagani,Shao,Zaro '14]
- OPENLOOPS ⇒ coming soon [Kallweit,Lindert,Maierhöfer,S.P,Schönherr]

QCD+EW corrections to $t\bar{t}H$

Weak corrections

- $\bullet\,$ stable tops, no $\gamma\text{-emission}\,$
- from +1% (inclusive) to -10%
- real *Z*, *W*, *H* emission (HBR) cancels 1/3 of virtual

Full EW corrections

[Yu,Wen-Gan,Ren-You,Chong,Lei '14]

- γ bremsstrahlung and γ -induced (~ 1%) contribution
- top decays in NWA

Important for $t\bar{t}H$ precision in highly boosted regime

S. Pozzorini (Zurich University)

Top Physics

NLO EW automation in OpenLoops

NLO EW completely automated in OpenLoops

- OPENLOOPS [Lindert, Maierhöfer, S.P.] +SHERPA [Schönherr] and in-house MC [Kallweit]
- validation well advanced (based on 2 fully independent in-house generators)

Technical performance of 1-loop EW for $t\bar{t}$ + jets

- o code size, compilation&runtime reflect moderate increase of complexity wrt QCD
- 1-loop EW similarly fast as highly competitive 1-loop QCD timings up to $t\bar{t} + 2$ jets

	$n_{\rm loop \ diag}$		$t_{\rm compile} [s]$		size [MB]		$t_{\rm run}$ [ms/point]	
$t\bar{t} + 0, 1, 2j$	QCD	ΕŴ	QCD	ÉŴ	QCD	ΕŴ	QCD	EW
$d\bar{d} \rightarrow t\bar{t}$	11	33	2.1	3.5	0.1	0.2	0.27	0.69
$gg \to t\bar{t}$	44	70	3.6	3.7	0.2	0.3	1.6	2.8
$d\bar{d} \rightarrow t\bar{t}g$	114	360	3.5	5.9	0.4	0.9	4.8	13
$gg \to t\bar{t}g$	585	660	8.2	8.8	1.4	1.6	40	56
$d\bar{d} \rightarrow t\bar{t}u\bar{u}$	236	1274	5.3	16	0.8	2.8	12	48
$d\bar{d} \rightarrow t\bar{t}d\bar{d}$	472	2140	9.5	56	1.4	1.4	30	99
$d\bar{d} \rightarrow t\bar{t}gg$	1507	4487	20	47	3.5	8.2	133	327
$gg \rightarrow t\bar{t}gg$	8739	7614	105	79	18	16	1458	1557

Timings on 17-3770K with gcc 4.8 –O0 dynamic and unpolarised $t\bar{t}$ (significantly faster with decays!)

Opens the door to multi-leg NLO EW computations!

S. Pozzorini (Zurich University)

Top Physics

Outline

HL-LHC and MC tools
 MC requirements for HL-LH

NLO automation

EW corrections

- Features of EW corrections
- NLO EW for $pp
 ightarrow t ar{t}$
- NLO EW automation

$tar{t}bar{b}$ and $tar{t}+$ jets as $tar{t}H$ backgrounds I

$t\bar{t}H$ analyses at the LHC

- $t\bar{t}H(b\bar{b})$ originally considered best discovery channel for light Higgs
- $b\bar{b}b\bar{b}\ell\nu jj$ combinatorics hampers $H \rightarrow b\bar{b}$ reconstruction \Rightarrow huge QCD backgrounds

NLO reduces $t\bar{t}b\bar{b}$ and $t\bar{t}jj$ uncertainties from 80% to 15–30%

- tibb [Bredenstein, Denner, Dittmaier, S. P. '09/'10; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09];
- $t\bar{t}jj$ [Bevilacqua, Czakon, Papadopoulos, Worek '10/'11]

ATLAS/CMS analyses require matching to parton showers

- ttbb 5FNS (POWHEGBOX+HELAC-NLO) [Garzelli, Kardos, Trocsanyi '13/'14]
- ttbb 4FNS (SHERPA+OPENLOOPS) [Cascioli, Maierhoefer, Moretti, S. P., Siegert '13]
- $t\bar{t} + 0, 1, 2$ jets (SHERPA+OPENLOOPS) [Höche, Krauss, Maierhoefer, S. P., Schönherr, Siegert '14]

S. Pozzorini (Zurich University)

S–MC@NLO $t\bar{t}b\bar{b}$ 4F [Cascioli, Maierhöfer, Moretti, S. P. , Siegert '13]

Why NLO matching for $t\bar{t}b\bar{b}$ production in 4F scheme

5F scheme $(m_b = 0)$: $t\bar{t}b\bar{b}$ MEs cannot describe collinear $g \rightarrow b\bar{b}$ splittings

⇒ inclusive $t\bar{t}$ +b-jets simulation (quite important for exp. analyses!) requires $t\bar{t}g$ +PS, i.e. $t\bar{t}$ + ≤2 jets NLO merging [Höche, Krauss, Maierhöfer, S. P. , Schönherr, Siegert '14]

4F scheme $(m_b > 0)$: $t\bar{t}b\bar{b}$ MEs cover full b-quark phase space

- \Rightarrow MC@NLO $t\bar{t}b\bar{b}$ sufficient for inclusive $t\bar{t}$ +b-jets simulation
 - access to new $t\bar{t} + 2b$ -jets production mechanism wrt 5F scheme: double collinear $g \rightarrow b\bar{b}$ splittings (surprisingly important impact on $t\bar{t}H(b\bar{b})$ analysis!)

S-MC@NLO $t\bar{t}b\bar{b}$ 4F II

NLO Corrections and Uncertainties for ttb and ttbb Cross Sections

Analyses with $N_b \ge 1$ (*ttb*) and $N_b \ge 2$ (*ttbb*) QCD b-jets ($p_T > 25 \text{ GeV}$, $|\eta| < 2.5$)

	ttb	ttbb	$ttbb(m_{bb} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2644_{-38\%}^{+71\%}_{-11\%}^{+14\%}$	$463.3^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.4^{+63\%}_{-35\%}^{+17\%}_{-13\%}$
$\sigma_{\rm NLO}[{\rm fb}]$	$3296^{+34\%}_{-25\%}{}^{+5.6\%}_{-4.2\%}$	$560^{+29\%}_{-24\%}{}^{+5.4\%}_{-4.8\%}$	$141.8^{+26\%}_{-22\%}{}^{+6.5\%}_{-4.6\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.21	1.15
$\sigma_{\rm MC@NLO}[{\rm fb}]$	$3313^{+32\%}_{-25\%}{}^{+3.9\%}_{-2.9\%}$	$600^{+24\%}_{-22\%}{}^{+2.0\%}_{-2.1\%}$	$181^{+20\%}_{-20\%}{}^{+8.1\%}_{-6.0\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.07	1.28

MSTW2008 NLO(LO) 4F PDFs

Good perturbative stability but unexpected MC@NLO enhancement

- K-factors moderate and rather independent of selection (including ttb!)
- 25–30% NLO and MC@NLO uncertainties mainly from μ_R (1st) variation, only 5% from μ_F, μ_Q (2nd) variations
- MC@NLO/NLO difference is negligible(moderate) in standard ttb(ttbb) selections but large enhancement (~30%) in Higgs-signal region ($m_{b\bar{b}} > 100 \text{ GeV}$)

S. Pozzorini (Zurich University)

S–MC@NLO $t\bar{t}b\bar{b}$ 4F III

MC@NLO effects in Distributions ($t\bar{t}b\bar{b}$ Selection)

Characteristic kinematic features

- MC@NLO enhancement at large $m_{b_1b_2}$, $\Delta R_{b_1b_2} \sim \pi$, and small $p_{T,b}$
- reaches 25–30% at $m_{b_1b_2} \sim 125 \,\text{GeV}$, which exceeds $t\bar{t}H(b\bar{b})$ signal!
- disappears almost completely in MC@NLO_{2b} where $g \rightarrow b\bar{b}$ splittings are switched off in the parton shower (double $g \rightarrow b\bar{b}$ splittings "smoking gun")

S-MC@NLO $t\bar{t}b\bar{b}$ 4F IV

Double $g \rightarrow b\bar{b}$ Splitting Contributions consistent with MC enhancement

- tt
 <u>t</u>
 <u>t</u>
 <u>gg</u>/tt
 <u>b</u>
 <u>b</u>
 ratio grows at same rate
 of MC@NLO excess
- emission of back-to-back small- $p_{\rm T}$ gluons enhanced by soft-collinear singularity

Don't fit into conventional hard-scattering $t\bar{t}b\bar{b}$ picture

- present also in $t\bar{t}$ +jets LO merged samples
- but large effect in hard $t\bar{t}H(b\bar{b})$ signal region unexpected

Implications for theory systematics in $t\bar{t}$ +HF

- understanding PS systematics crucial (both for 4F $t\bar{t}b\bar{b}$ or 5F $t\bar{t}$ +jets)
- in $t\bar{t}H(b\bar{b})$ signal region 4F $t\bar{t}b\bar{b}$ MC@NLO provides first $g \rightarrow b\bar{b}$ splitting at NLO

<code>MEPS@NLO</code> $t\bar{t}+0,1,2$ jets [Höche, Krauss, Maierhöfer, S. P. , Schönherr, </code>

Siegert '14]

Fixed-order $t\bar{t}jj$ NLO [Bevilacqua, Czakon, Papadopoulos, Worek '10/'11]

- very challenging (more than 7'000 $gg \rightarrow t\bar{t}gg$ loop diagrams)
- ${\ensuremath{\, \bullet }}$ theory uncertainty reduced from 80% to 15%
- matching to PS crucial for $t\bar{t}H(b\bar{b})$ background (and many other searches!)

Why NLO merging?

- inclusive $t\bar{t}$ NLO+PS simulations lose NLO (LO) accuracy for $t\bar{t}+1(2,3\dots)\,{\rm jet}$
- NLO merging combines $t\bar{t} + n$ -jet NLO+PS simulations with n = 0, 1, 2...w.o. double counting \Rightarrow NLO accuracy for 0, 1, 2... jets and log accuracy of PS

MEPS@NLO method [Höche, Krauss, Schönherr, Siegert '12]

- $0, 1, 2, \ldots$ jet regions separated via $k_{\rm T}$ -type jet algorithm (merging scale $Q_{\rm cut}$) and filled with $t\bar{t} + 0, 1, 2$ jet S-MC@NLO simulations
- intra-jet regions filled by (matched) PS emissions and inter-jet regions filled by MEs
- smooth PS-MEs transition ensured by supplementing MEs with PS-like CKKW scale and (subtracted) Sudakov FFs
- nodal scales of relevant pseudo-shower histories by inverting parton shower \Rightarrow optimal merging (small Q_{cut} dependence) in SHERPA

S. Pozzorini (Zurich University)

MEPS@NLO $t\bar{t} + 0, 1, 2$ jets II

Jet-bin cross sections ($p_T > 40, 60, 80 \text{ GeV}$)

- ${\ }$ ${\ }$ S-MC@NLO $t\bar{t}$
- 1.65×MEPS@LO $t\bar{t}$ + 0, 1, 2 jets (LO merging)
- MEPS@NLO $t\bar{t} + 0, 1, 2$ jets (NLO merging)

Decent (10-20%) mutual agreement

Reduction of μ_R, μ_F, μ_Q variations

$N_{\rm light-jet} \ge$	0	1	2
LO	48%	65%	80%
NLO	17%	20%	20-30%

Merging scale choice and dependence

- $Q_{\rm cut}$ below jet- $p_{\rm T}$ threshold and above Sudakov peak \Rightarrow for NLO accurate multi-jet bins avoiding problematic $\ln(Q_{\rm cut})$
- $Q_{\rm cut}=30\pm10~{\rm GeV}$ and $\ll10\%$ dependence

S. Pozzorini (Zurich University)

MEPS@NLO $t\bar{t} + 0, 1, 2$ jets III

$p_{\rm T}$ spectra of first 3 jets ($p_{\rm T} > 40 \, {\rm GeV}$)

- ${\ }$ ${\ }$ S-MC@NLO $t\bar{t}$
- $1.65 \times MEPS@LO \ t\bar{t} + 0, 1, 2 \text{ jets}$ (LO merging)
- MEPS@NLO $t\bar{t} + 0, 1, 2$ jets (NLO merging)

Mutual agreement (apart from tails of $2^{\rm nd}/3^{\rm rd}$ jet)

Reduction of scale dependence

 similarly strong as for corresponding jet bins apart from hard tails (still dirty due to stat fluctuations)

Take home message

- MEPS@NLO provides NLO accuracy for $t\bar{t}+0,1,2$ jets
- will now permit to study lot of interesting things (more exclusive observables/correlations, heavy-flavour jets,...)

Outline

HL-LHC and MC tools
 MC requirements for HL-LI

NLO automation

EW corrections

- Features of EW corrections
- NLO EW for $pp
 ightarrow t ar{t}$
- NLO EW automation

3 Recent MC progress at NLO QCD in top physics

- $t\bar{t}+$ jets
- $WWb\bar{b}$

Treatments of Top production and decay at NLO I

Representative doubly- ($t\bar{t}$ like) singly- (tW like) and non-resonant (WW like) trees

 $W^+W^-b\bar{b}$ in **5F** scheme [Denner, Dittmaier, Kallweit, S.P. '10; Bevilacqua et al. '10; Heinrich et al. '13; Kardos et al. '14]

- full set of diagrams (including $\sim 10^3$ loop diagrams) with $\mu_t^2 = m_t^2 \mathrm{i}\Gamma_t m_t$
- finite Γ_t effects involve off-shell, single- and non-resonant contributions with interferences ("quantum overlap" of $t\bar{t}$, Wt, WW "processes"!)
- small $\mathcal{O}(\Gamma_t/m_t)$ effects wrt NWA for inclusive $t\bar{t}$ observables
- $m_b = 0$ approx. requires two hard b-jets $(g \rightarrow b\bar{b}$ collinear singularities)

Treatments of Top production and decay at NLO II

Representative doubly- ($t\bar{t}$ like) singly- (tW like) and non-resonant (WW like) trees

 $W^+W^-b\bar{b}$ in 4F scheme ($m_b>0$) [Frederix'13; Cascioli,Kallweit,Maieröfer,S.P. '13]

- important for top-backgrounds in 0- and 1-jet bins (e.g. in $H \rightarrow WW$)
- first consistent $t\bar{t}$ and Wt combination with interference at LO and NLO
- avoids separation of $Wt \rightarrow WWb$ from $t\bar{t} \rightarrow WWbb$ in 5F scheme (unstable and ill-defined due to $t\bar{t}$ contamination at NLO)

$W^+W^-bar{b}$ background to H o WW in 1-jet bin [Frederix '13]

4F simulation with Madgraph5/aMC@NLO

- 1-jet bin of ATLAS $H \rightarrow WW$ ATLAS analysis
- $\bullet\,$ large top background with $\mathcal{O}(20\%)\;Wt$ component

NLO effects (depend $\mu_0 = H_T/2$)

- moderate correction around -20% but important shape distortion in $m_{\ell\ell}$ (less in $m_{\rm T}^{WW}$)
- large scale uncertainty (25%) attributed to veto against 2nd jet

Interference at LO

• moderate positive $t\bar{t}/Wt$ interference

Unified $t\bar{t} + tW$ NLO description | [Cascioli, Maierhöfer, Kallweit, S.P. '13]

4F NLO $W^+W^-b\bar{b}$ simulation with OPENLOOPS

- 0,1,2 jet bins
- detailed study of " $t\bar{t}-Wt$ interplay"

Ill-defined $t\bar{t}/Wt$ separation (5F) \Rightarrow gauge-inv $t\bar{t}/\text{non-}t\bar{t}$ separation (4F)

Numerical NWA \Rightarrow on-shell $t\bar{t}$ production×decay

$$\mathrm{d}\sigma_{t\bar{t}} = \lim_{\Gamma_t \to 0} \left(\frac{\Gamma_t}{\Gamma_t^{\mathrm{phys}}}\right)^2 \mathrm{d}\sigma_{W^+W^-b\bar{b}}(\Gamma_t)$$

Finite-top-width (FtW) remainder of $\mathcal{O}(\Gamma_t/m_t)$

- dominated by Wt but contains also off-shell $t\bar{t}$, interferences, non-factorisable corrections, . . .
- from sub-percent for 2 b-jet final states to 6–8% effect in inclusive case (and more for 0/1-jet bins!)

$W^+W^-b\bar{b}$ cross section in jet bins

• most interesting application of $m_b > 0$

NLO and FtW effects in jet bins

- 40% inclusive NLO correction driven by 2-jet bin, with very stable 0/1-jet bins
- $\, \bullet \,$ only $\, \lesssim \, 10\%$ NLO uncertainty in all bins
- FtW contribution bin-dependent (2% to 30%) and strongly enhanced in 0/1-jet bins!

NLO(LO) 4F NNPDFS, $p_{T,j} = 30 \text{ GeV}$

Nontrivial interplay of NLO and off-shell/single-top effects

NLO+PS for $W^+W^-b\bar{b}$ (conceptual and technical issues)

Need of NLO+PS matching

- NLO precision in the context of fully exclusive simulations for experimental analysis
- describes higher-order resummation effects in the shower aproximation and, possibly, related uncertainties (both should be small!)

NLO+PS matching for a process with intermediate resonances

- matrix elements provide NLO accurate description of "Breit-Wigner" top-distributions (with off-shell effects,...)
- crucial for precision observables sensitive to shape of top resonance (kinematic m_t measurements!), edges of on-shell $t\bar{t}$ phase space, single-top Wt contributions, ...

Nontrivial conceptual and technical (open) issue

- recoil of standard shower emissions off $W^+W^-b\bar{b}$ final states induce arbitrary kinematic distortions of m_{Wb}
- potentially very strong distortions of Breit-Wigner shape (formally of order $\alpha_S^2 m_t / \Gamma_t \sim 1!$)
- requires yet unknown technique for matching PS to off-shell resonances at NLO

NLO+PS $W^+W^-b\bar{b}$ with POWHEL

[Garzelli,Kardos,Trocsanyi '14]

Employed matching (standard POWHEL)

- does not address potential order $\alpha_S^2 m_t / \Gamma_t$ inconsistencies in top-resonance shape
- can provide insights into potential pathologic features: large shower effects in observables that are sensitive to M_{Wb}

Distribution in $m_{\ell b}$

- mass measurement thanks to $m_{\ell b}^2 \leq m_t^2 m_W^2$ endpoint sensitive to m_t (and off-shell effects)
- requires very precise shape prediction
- **upper plot**: severe distortions from shower (blue) and hadronisation (red) after 1st matched emission (green)
- lower plot: sizable shape distortions depending on Pythia (or Herwig) version

Open question: physical or fake $\mathcal{O}(\alpha_S^2 m_t/\Gamma_t)$ effect?

Summary and Outlook

High momentum in multi-leg NLO MC developments

- fast NLO QCD multi-leg amplitudes with **OPENLOOPS** (now public)
- NLO+PS and NLO-merging with OPENLOOPS+SHERPA
- NLO EW automation around the corner

Precise and realistic MC simulations for multi-particle final states

- $t\bar{t} + 0, 1, 2$ jets including b-jets
- $WWb\bar{b}$ (conceptual NLO matching issues)
- $m_b > 0 \Rightarrow t\bar{t}$ -tW interference, double $g \to b\bar{b}$ splittings in $t\bar{t}b\bar{b}$

Outlook

- new NLO multi-leg MC precision highly relevant for HL-LHC
- exploit it as much (and soon) as possible in (S and B) simulations at LHC
- higher precision (NLO EW, NNLO+PS,...) is likely to emerge well before HL-LHC

Backup slides

S–MC@NLO $t\bar{t}b\bar{b}$ 4F II

Sherpa's MC@NLO formula [Frixione, Webber '02; Höche, Krauss, Schönherr, Siegert '11]

$$\sigma_{n} = \int \mathrm{d}\Phi_{n} \left[\mathcal{B}(\Phi_{n}) + \mathcal{V}(\Phi_{n}) + \mathcal{B}(\Phi_{n}) \otimes \mathcal{I} \right] \left\{ \Delta(\mu_{Q}^{2}, t_{\mathrm{IR}}) + \int_{t_{0}}^{\mu_{Q}^{2}} \mathrm{d}\Phi_{1} \mathcal{S}(\Phi_{1}) \Delta(\mu_{Q}^{2}, t) \right\}$$

+
$$\int \mathrm{d}\Phi_{n+1} \left[\mathcal{R}(\Phi_{n+1}) - \mathcal{B}(\Phi_{n}) \otimes \mathcal{S}(\Phi_{1}) \right]$$

- shower resummation effectively acts starting from $\mathcal{O}(\alpha_s^2)$, and iterated emissions yield fully realistic events
- inclusive observables with n (n + 1) particles preserve NLO (LO) accuracy

Scale choice crucial due to $\alpha_S^4(\mu^2)$ dependence (80% LO variation)

- ${\rm \circ}~$ widely separated scales $m_b \leq Q_{ij} \lesssim m_{t\bar{t}b\bar{b}}$ can generate huge logs
- CKKW inspired scale adapts to b-jet $p_{\rm T}$ and guarantees good pert. convergence

$$\mu_R^4 = E_{\mathrm{T},t} E_{\mathrm{T},\bar{t}} E_{\mathrm{T},\bar{b}} E_{\mathrm{T},\bar{b}} \Rightarrow \alpha_S^4(\mu_R^2) = \alpha_S(E_{\mathrm{T},t}^2) \alpha_S(E_{\mathrm{T},\bar{t}}^2) \alpha_S(E_{\mathrm{T},\bar{b}}^2) \alpha_S(E_{\mathrm{T},\bar{b}}^2)$$

S. Pozzorini (Zurich University)

S-MC@NLO $t\bar{t}b\bar{b}$ 4F VI [Cascioli, Maierhöfer, Moretti, S. P. , Siegert '13]

Accuracy of "Double Splittings" in MC@NLO *ttbb* Simulation Naive picture

real-emission $t\bar{t}b\bar{b}g$ MEs plus $g \rightarrow b\bar{b}$ shower splitting \Rightarrow only LO+PS accuracy as in usual LO merging

Correct MC@NLO picture: interplay of three different contributions

 $t\bar{t}b\bar{b}g$ MEs plus PS $g \rightarrow b\bar{b}$ emission

- LO $t\bar{t}b\bar{b}g$ uncertainty ${\sim}100\%$ at large $p_{\rm T}$
- ${\, \bullet \,}$ largely cancelled by PS-matching at small $p_{\rm T}$

 $t\bar{t}b\bar{b}$ MEs plus PS gluon and $g \rightarrow b\bar{b}$ emissions

- $\, \bullet \,$ dominates at small $p_{\rm T}$
- NLO $t\bar{t}b\bar{b}$ accuracy ${\sim}25{-}30\%$

Well reflected in scale uncertainty of 1^{st} light-jet emission on top of $t\bar{t}b\bar{b}...$

S. Pozzorini (Zurich University)

S–MC@NLO $t\bar{t}b\bar{b}$ 4F VII [Cascioli, Maierhöfer, Moretti, S. P. , Siegert '13]

ttb analysis $(N_b \ge 1)$: 1st light-jet p_T distribution (responsible for double splittings)

MC@NLO vs NLO

- Sudakov damping of NLO IR singularity at $p_{\rm T} \rightarrow 0$
- 25% NLO excess in the hard tail (probably due to dynamic μ_Q , multi-jet final state, unresolved b-quark)

MC@NLO scale uncertainty

- LO-like uncertainty (~100%) in the tail irrelevant for $t\bar{t}H(b\bar{b})$
- NLO-like accuracy (${\sim}30\%$) up to $70\,{\rm GeV}$

\Rightarrow NLO-like accuracy in the region relevant for $t\bar{t}H(b\bar{b})$

NLO matching and merging for $t\bar{t}+jets$

- NLO+PS $t\bar{t}$ + 1 jet (with POWHEGBOX) [Alioni, Moch, Uwer '12]
- FxFx $t\bar{t} + 0, 1$ jets (with MADGRAPH5/AMC@NLO) [Frederix, Frixione '12]
- MEPS@NLO *tt* + 0,1 jets (with SHERPA+GOSAM) [Höche, Huang, Luisoni, Schönherr, Winter '13]
- MEPS@NLO tt + 0, 1, 2 jets (with SHERPA+OPENLOOPS) [Höche, Krauss, Maierhöfer, S. P., Schönherr, Siegert '14]

Setup of MEPS@NLO $t\bar{t} + 0, 1, 2$ jets simulation

- 7 TeV LHC with 5F MSTW2008 NLO PDFs
- LO+PS top decays including spin correlations
- standard dileptonic $t\bar{t}$ cuts, R=0.4 anti- $k_{\rm T}$ jets
- central scale $1/\mu_{\text{core}}^2 = 1/\hat{s} + 1/(m_t^2 \hat{t}) + 1/(m_t^2 \hat{u})$

Dynamic scale for $W^+W^-b\bar{b}$ | [Cascioli, Maierhöfer,Kallweit, S.P. '13]

Idea: $\mu_R \sim m_t$ for $g \rightarrow b\bar{b}$ splittings might generate corrections up to $\alpha_S(m_b)/\alpha_S(m_t) \sim 2$ in Wt contribution

Appropriate scales for $t\bar{t}$ and Wt production (see CKKW and AP evolution)

 $\mu_{t\bar{t}}^2 = E_{\mathrm{T},t} E_{\mathrm{T},\bar{t}} \qquad \mu_{tW^-}^2 = E_{\mathrm{T},t} E_{\mathrm{T},\bar{b}} \qquad \Rightarrow \quad \alpha_S^2(\mu_{tW^-}^2) \simeq \alpha_S(E_{\mathrm{T},t}^2) \alpha_S(E_{\mathrm{T},\bar{b}}^2)$ Global "interpolating scale"

$$\mu_{WWbb}^{2} = \mu_{W^{+}b} \, \mu_{W^{-}\bar{b}} \quad \text{with} \quad \mu_{Wb} = P_{b}(p_{W,b}) \, \underline{E}_{T,b} + P_{t}(p_{W,b}) \, E_{T,t}$$

 $g \rightarrow b \bar{b}$ and $t \rightarrow W b$ probabilities dictated by respective singularity structures

$$rac{P_b}{P_t} \propto rac{\chi_b}{\chi_t} \qquad ext{with} \qquad \chi_b = rac{m_t^2}{E_{ ext{T},b}^2}, \quad \chi_t = rac{m_t^4}{[(p_W + p_b)^2 - m_t^2]^2 + \Gamma_t^2 m_t^2},$$

and free constants fixed by natural normalisation conditions

$$P_b + P_t = 1, \quad \text{and} \quad \int \mathrm{d}\sigma_{W^+W^-b\bar{b}}^{\mathrm{FtW}} = \int \mathrm{d}\Phi \left[1 - P_t(\Phi)P_{\bar{t}}(\Phi)\right] \frac{\mathrm{d}\sigma_{W^+W^-b\bar{b}}}{\mathrm{d}\Phi}$$

S. Pozzorini (Zurich University)

Dynamic scale for $W^+W^-b\bar{b}$ II [Cascioli, Maierhöfer,Kallweit, S.P. '13]

Consistency of $t\bar{t}$ vs tW **Probability Densities** Check normalisation identity for more exclusive/differential observables

$$\int \mathrm{d}\sigma_{W^+W^-b\bar{b}}^{\mathrm{FtW}} = \int \mathrm{d}\Phi \left[1 - P_t(\Phi)P_{\bar{t}}(\Phi)\right] \frac{\mathrm{d}\sigma_{W^+W^-b\bar{b}}}{\mathrm{d}\Phi}$$

to verify if observed finite-top-width effects (computed via $\Gamma_t \rightarrow 0$) are consistent with (pseudo)probability densities

Test dependence wrt veto on $2^{\rm nd}$ b-jet

• single-top Wt contribution strongly enhanced when $p_{T,veto} \rightarrow 0$

• enhancement fairly well described by $P_t(\Phi), P_b(\Phi)$ probability densisties

Generic-Jet Bins: complete cross section and finite-top-width (FtW) effects

	μ_0	σ [fb]	σ_0 [fb]	σ_1 [fb]	$\sigma_{2^+}[{\rm fb}]$
LO	μ_{WWbb}	$1232^{+34\%}_{-24\%}$	$37^{+38\%}_{-25\%}$	$367^{+36\%}_{-24\%}$	$828^{+33\%}_{-23\%}$
NLO	μ_{WWbb}	$1777^{+10\%}_{-12\%}$	$41^{+3\%}_{-8\%}$	$377^{+1\%}_{-6\%}$	$1359^{+14\%}_{-14\%}$
K	μ_{WWbb}	1.44	1.09	1.03	1.64
LO	m_t	$1317^{+35\%}_{-24\%}$	$35^{+37\%}_{-25\%}$	$373^{+36\%}_{-24\%}$	$909^{+35\%}_{-24\%}$
NLO	m_t	$1817^{+8\%}_{-11\%}$	$40^{+4\%}_{-8\%}$	$372^{+1\%}_{-8\%}$	$1405^{+13\%}_{-13\%}$
K	m_t	1.38	1.14	1.00	1.55
	μ_0	$\sigma^{\rm FtW}$ [fb]	$\sigma_0^{ m FtW}[{ m fb}]$	$\sigma_1^{\rm FtW}[{\rm fb}]$	$\sigma_{2^+}^{ m FtW}[{ m fb}]$
LO	μ_{WWbb}	$91^{+41\%}_{-27\%}$	$13^{+42\%}_{-27\%}$	$71^{+40\%}_{-27\%}$	$7^{+45\%}_{-29\%}$
NLO	μ_{WWbb}	$107^{+6\%}_{-11\%}$	$13^{+1\%}_{-7\%}$	$61^{+2\%}_{-16\%}$	$33^{+51\%}_{-31\%}$
K	μ_{WWbb}	1.18	0.99	0.86	4.70
LO	m_t	$63^{+36\%}_{-25\%}$	$8^{+36\%}_{-25\%}$	$49^{+36\%}_{-24\%}$	$6^{+46\%}_{-29\%}$
NLO	m_t	$100^{+17\%}_{-16\%}$	$13^{+14\%}_{-14\%}$	$65^{+9\%}_{-12\%}$	$23^{+42\%}_{-28\%}$
K	m_t	1.58	1.47	1.32	3.89

b-Je	tΙ	Bins :	complete	cross :	section	and	finite-top-widt	ו (FtW) effects
------	----	---------------	----------	---------	---------	-----	-----------------	--------	-----------

	μ_0	σ [fb]	$\sigma_0[{ m fb}]$	σ_1 [fb]	$\sigma_{2^+}[{\rm fb}]$
LO	μ_{WWbb}	$1232^{+34\%}_{-24\%}$	$37^{+38\%}_{-25\%}$	$367^{+36\%}_{-24\%}$	$828^{+33\%}_{-23\%}$
NLO	μ_{WWbb}	$1777^{+10\%}_{-12\%}$	$65^{+20\%}_{-17\%}$	$571^{+14\%}_{-14\%}$	$1140^{+7\%}_{-10\%}$
K	μ_{WWbb}	1.44	1.73	1.56	1.38
LO	m_t	$1317^{+35\%}_{-24\%}$	$35^{+37\%}_{-25\%}$	$373^{+36\%}_{-24\%}$	$909^{+35\%}_{-24\%}$
NLO	m_t	$1817^{+8\%}_{-11\%}$	$63^{+20\%}_{-17\%}$	$584^{+14\%}_{-14\%}$	$1170^{+5\%}_{-9\%}$
K	m_t	1.38	1.80	1.56	1.29
	μ_0	$\sigma^{\rm FtW}[{\rm fb}]$	$\sigma_0^{\rm FtW}[{\rm fb}]$	$\sigma_1^{\rm FtW}[{\rm fb}]$	$\sigma_{2^+}^{ m FtW}[{ m fb}]$
LO	μ_{WWbb}	$91^{+41\%}_{-27\%}$	$13^{+42\%}_{-27\%}$	$71^{+40\%}_{-27\%}$	$7^{+45\%}_{-29\%}$
NLO	μ_{WWbb}	$107^{+6\%}_{-11\%}$	$20^{+18\%}_{-17\%}$	$82^{+4\%}_{-10\%}$	$5^{+2\%}_{-10\%}$
K	μ_{WWbb}	1.18	1.49	1.16	0.77
LO	m_t	$63^{+36\%}_{-25\%}$	$8^{+36\%}_{-25\%}$	$49^{+36\%}_{-24\%}$	$6^{+46\%}_{-29\%}$
NLO	m_t	$100^{+17\%}_{-16\%}$	$16^{+22\%}_{-18\%}$	$77^{+16\%}_{-15\%}$	$6^{+12\%}_{-16\%}$
K	m_t	1.58	1.89	1.58	1.10

- NLO radiation doesn't change b-jet multiplicity ⇒ rather stable K-factor and uncertainties
- ullet single-top and off-shell effects still enhanced at small b-jet p_{T}

In general: nontrivial interplay of NLO and off-shell/single-top effects

Jet-Veto and Binning Effects

0-jet bin vs $p_{\rm T}$ -veto

- smooth inclusive limit at large p_T and very strong p_T sensitivity below 50 GeV:
 - FtW effects increase up to 50%
 - K-factor falls very fast
- ${\, \bullet \,}$ at low $p_{\rm T}$ IR singularity calls for NLO+PS matching
- typical veto $p_{\rm T} \sim 30 \, {\rm GeV}$ yields 98% suppression and still decent NLO stability $(K \sim 1)$

1-jet bin vs p_{T} threshold

- low $p_{\rm T}$ behaviour driven by veto on 2nd jet and analogous to 0-jet case
- high $p_{\rm T}$ region driven by 1st jet and NLO radiation dominates over b-jets from $W^+W^-b\bar{b}$

$t\bar{t}$ and Wt Background to $H \rightarrow W^+W^-$ in 0-Jet Bin

• $\Delta\phi_{e^+\mu^-}$ and $M_{e^+\mu^-}$ distributions feature 10% NLO uncertainty

- significant (although moderate) NLO shape distortions
- 30–40% FtW contributions (nontrivial $t\bar{t}/Wt$ mix)

S. Pozzorini (Zurich University)

NLO+PS $W^+W^-b\bar{b}$ with POWHEL |

Simulation with PowhegBox+Helac-NLO

- NLO+PS for $pp \rightarrow \ell^+ \nu \ell^- \nu b \bar{b}$ for 7 TeV
- standard $t\bar{t}$ cuts with 2 b-jets + veto against non-b jets
- 5F scheme $(m_b = 0)$
- factor-2 variations around $\mu_0 = m_t$

Sanity check: NLO vs LHE (NLO+PS_{1st emission})

- expected: exact agreement for *inclusive* cross section and $\mathcal{O}(\alpha_S^2)$ distortions in distributions
- observed: 10% shape distortions
- probably a POWHEG-related side effect of large NLO shape corrections with $\mu = m_t$ (can be avoided using a dynamical scale)

Importance of off-shell effects and NLO corrections to decay

- assessed by comparing NLO+PS results (1st emission only) based on $W^+W^-b\bar{b}$ and on-shell $t\bar{t}$ with LO decays
- shape distortions at large $m_{\ell b}$ (off-shell effects) and small $m_{\ell b}$ (LO decays)

m_t from $m_{\ell b}$ distribution | [Heinrich, Winter et al '13]

WWbb NLO simulation with GOSAM+SHERPA

- 5F scheme ($m_b = 0$) and NWA for $W \to \ell \nu$
- includes NLO top decays, Wt contribution, ...

NLO effects and scale uncertainties

- 20% correction to LO shape ($\Delta m_t \sim 2 \, {\rm GeV}$)
- non-negligible scale uncertainty in NLO shape (factor-2 variations around $\mu_0 = H_T/2$)

NLO $WWb\bar{b}$ vs NLO $t\bar{t}$ with LO decays

- NLO WWbb shape distortion disappears, most likely due to LO decays
- would be interesting to compare against LO+PS decays and to asses off-shell effects ...

m_t determination based on $WWb\bar{b}$ templates

- (1) generate NLO pseudo-data with $m_t^{\rm in}$ and $0.5 \leq \mu/\mu_0 \leq 2$
- (2) extract m_t^{out} by fitting to NLO templates with $\mu = \mu_0$ (and variable m_t)
- (3) similar fit with LO templates

NLO effects and uncertainties

- neglecting NLO (and shower) corrections to m_ℓ underestimates m_t by 2 GeV
- NLO scale uncertainty $\Delta m_t \simeq 1 \, \text{GeV}!$

Remains to be studied

- variation of kinematic μ_0 dependence
- NLO+PS for $WWb\bar{b}$ (nontrivial!)