Perspectives for Top Physics at the (I)LC

Frank Simon, Max-Planck-Institut für Physik Munich, Germany

TOP2014, Cannes, October 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Introduction: Top Physics at Future Colliders ullet
- Linear Colliders in brief \bullet
- Top quarks in e⁺e⁻ collisions
- Top properties: Mass ●
- Top as a BSM probe: Electroweak couplings
- The Top Yukawa Coupling ullet
- Summary •

Top Physics at Future Colliders

- Key motivation for future energy frontier colliders after the Higgs discovery:
 - Full understanding of EWSB
 - Discovering / constraining New Physics to find the "breaking point" of the Standard Model - and to answer fundamental open questions
- As the heaviest SM particle, the Top plays an important role in this: Strongest coupling to the Higgs field, potential sensitivity to New Physics
 - The top mass is the leading uncertainty in the study of the vacuum stability of the SM
 - Deviations from the SM expectations in electroweak couplings could point to BSM physics at higher scales

Top physics will be a key component for any future collider

► Top is the only quark that has not yet been studied in e⁺e⁻ collisions - will benefit substantially from further precision measurement

3

ILC - The International Linear Collider

- Currently the most advanced concept for a future energy frontier collider
 - e⁺e⁻ collider, baseline energy 500 GeV, high luminosity: 2 x 10³⁴ cm⁻²s⁻¹
 - staged construction, starting from 250 GeV / 350 GeV
 - upgrade to 1 TeV possible (extension of linacs), luminosity upgrade by rate increase

CLIC - The Compact Linear Collider

- A possible future energy frontier collider at CERN
 - e⁺e⁻ collisions at up to 3 TeV with high luminosity (~ 6 x 10³⁴ cm⁻²s⁻¹ at 3 TeV)
 - Staged construction 350 500 GeV, ~ 1.5 TeV, 3 TeV detailed energies under study, based on physics and technical considerations
 - Based on two-beam acceleration: gradients of 100 MV/m
 - Development phase until ~2018 CDR completed in 2012

Detector Systems at Linear Colliders

- Low-mass, high precision vertexing & tracking
- Highly granular calorimeters
- Particle flow event reconstruction

- CLIC detectors based on ILC concepts, with modifications in the calorimeters, vertex and forward regions to account for higher energy and higher backgrounds
- Detailed simulation models implemented in GEANT4
- Realistic event reconstruction including pattern recognition, tracking, PFA
- Full simulation studies used for all results presented here

• The dominant production mechanism: Top pair production

• Rich physics opportunities:

The dominant production mechanism: Top pair production •

- Rich physics opportunities:
 - Top properties: **mass**, width, decay modes
 - BSM sensitivity: CP violation, \bullet flavor-changing decays,...

The dominant production mechanism: Top pair production \bullet

- Rich physics opportunities:
 - Top properties: **mass**, width, decay modes
 - BSM sensitivity: CP violation, flavor-changing decays,...
 - Top properties: mass, width,
 - Yukawa coupling, strong coupling constant
 - **Electroweak couplings** lacksquaresensitivity to BSM physics

• The dominant production mechanism: Top pair production

- Measurements enabled by
 - known initial state & clean final state
 - Possibility for polarized beams crucial for coupling measurements

- Rich physics opportunities:
 - Top properties: mass, width, decay modes
 - BSM sensitivity: CP violation, flavor-changing decays,...
 - Top properties: **mass**, width,
 - Yukawa coupling, strong coupling constant
 - Electroweak couplings sensitivity to BSM physics

• Strategy depends on targeted ttbar final state

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

Frank Simon (fsimon@mpp.mpg.de)

8

• Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
 - provides t / tbar identification
- missing energy measurement

• Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
 - provides t / tbar identification
- missing energy measurement

Universal

- Flavor tagging:
 - b identification
 - b/c separation
- b-Jet energy measurement
- light Jet reconstruction & energy measurement

• Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
 - provides t / tbar identification
- missing energy measurement

Universal

- Flavor tagging:
 - b identification
 - b/c separation
- b-Jet energy measurement
- light Jet reconstruction & energy measurement

All-hadronic

• global hadronic energy reconstruction

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

8

Top Mass at e⁺e⁻ Colliders

- Measurement in top pair production, two possibilities, each with advantages and disadvantages:
 - Invariant mass
 - experimentally well defined (but not theoretically: "PYTHIA mass")
 - can be performed at arbitrary energy above threshold: high integrated luminosity
 - Threshold scan
 - theoretically well understood, can be calculated to higher orders
 - needs dedicated running of the accelerator (but is also in a sweet spot for Higgs physics)
 - The "ultimate" mass measurement at a LC!

Reconstruction and kinematic Mass - Performance

Mass fit - Result:

stat. uncertainty on m_t : 80 MeV (FH + SL) [100 fb⁻¹] stat. uncertainty on Γ_t : 220 MeV (FH + SL) exp. systematics of similar order

in addition: *substantial* theoretical / interpretation uncertainties

- Very low non-ttbar background
 - S/B ~8.5 (12) for FH (SL) at 500 GeV
 - S/B ~4.5 directly above threshold
- High reconstruction efficiency
 - 34% (44%) for FH (SL) at 500 GeV
 - 92% for selected decay modes at threshold

Analysis at threshold optimized for significance, not highest reconstruction quality

Full simulations with a detailed detector model, signal, physics & machine backgrounds

The Top Threshold - Ultimate Sensitivity

The cross-section around the threshold is affected by several properties of the top quark and by QCD

- Top mass, width, Yukawa coupling
- Strong coupling constant

 Effects of some parameters are correlated; dependence on Yukawa coupling rather weak precise external α_s helps

Here: Extract mass and α_s

Threshold Scans at Linear Colliders

TOP2014, Cannes, October 2014

Statistical Precision from Threshold Scan

- Additional possibilities:
 - With high precision external α_s the Top Yukawa coupling can be measured with
 ~ 7% (stat) precision
 - The top width can also be included in the fit - uncertainties (stat) ~ 30 MeV arXiv:1310.0563

[MeV]	Δm	theory 1%/3%	Δα	theory 1%/3%
ILC - 2D Fit	27	5/9	0.0008	0.0009/0.0022
CLIC - 2D Fit	34	5/8	0.0009	0.0008/0.0022
[MeV]	Δm	theory 1%/3%	۵s	
ILC - 1D Fit	18	18/55	21	
CLIC - 1D Fit	22	18/56	20	EPJ C73, 2540 (201

Fit Results

Statistical Precision from Threshold Scan

[MeV]	Δm	theory 1%/3%	Δα	theory 1%/3%	
ILC - 2D Fit	27	5/9	0.0008	0.0009/0.0022	
CLIC - 2D Fit	34	5/8	0.0009	0.0008/0.0022	
[MeV]	Δm	theory 1%/3%	۵s		
ILC - 1D Fit	18	18/55	21		
CLIC - 1D Fit	22	18/56	20	EPJ C73, 2540 (201;	

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

14

Side Remark - Threshold Scan at LCs and FCCee

- Somewhat different luminosity spectra for different machines:
 - no beamstrahlung tail in storage ring
 - sharper main peak at ILC, broader at CLIC ullet

Side Remark - Threshold Scan at LCs and FCCee

- Slight differences in statistics due to cross section, changes in sensitivity due to steepness of threshold turn-on
- ▶ For 100 fb⁻¹, no polarization, 1D mass fit:

16 MeV → 18 MeV → 21 MeV (stat) **FCCee** CLIC ILC

- Somewhat different luminosity spectra for different machines:
 - no beamstrahlung tail in storage ring
 - sharper main peak at ILC, broader at CLIC

Side Remark - Threshold Scan at LCs and FCCee

TOP2014, Cannes, October 2014

Systematics: First Studies

- Measurements at the top threshold will likely be systematics limited
 - first studies have been done, still incomplete

Mass:

- Statistical uncertainty for 100 fb⁻¹ (reasonably modest program)
 - ~ 20 30 MeV (stat)
- Experimental Systematics
 - Beam Energy: ~ 30 MeV or lower
 - Non-ttbar background, selection efficiencies: ~ 10 MeV
 - Luminosity Spectrum (studied for CLIC LS with reconstruction of spectrum via Bhabha scattering): ~ 6 MeV
- Theory Systematics
 - Expected to be significant, naive estimates provide numbers of up to O 100 MeV -Requires a dedicated study - in progress for NNNLO calculations of cross-section at threshold

16

- Total cross-section $q, q) = -ie \left\{ \gamma_{\mu} \left(F_{1V}^{A}(k^{2}) + \gamma_{5}F_{1A}^{A}(k^{2}) \right) + \frac{\mu}{2m_{t}}(q+q)^{\mu} \left(iF_{2}^{A}(k^{2}) + \gamma_{5}F_{1A}^{A}(k^{2}) \right) \right) + \frac{\mu}{2m_{t}}(q+q)^{\mu} \left(iF_{2}^{A}(k^{2}) + \gamma_{5}F_{1A}^{A}(k^{2}) \right) + \frac{\mu}{2m_{t}}(q+q)^{\mu} \left(iF_{2}^{A}(k^{2}) + \gamma_{5}F_{1A}^{A}(k^{2}) \right) \right)$
- Forward-backward Asymmetry A_{FB}

Perspectives for Top Phys

TOP2014, Cannes, October 2014

• Helicity Angie A distribution (related to tradition of the states \widetilde{F}_i^X and \widetilde{F}_i^X a

Frank Simon (fsimon@m/pp.mpg.de)

• For each: Two polarizations $e_{L}^{+} = e_{R}^{+}, e_{R}^{+} = e_{L}^{+}$ \Rightarrow LC polarised beams crucial!

Electroweak Couplings: Expected Precision

precision on total cross-section: ~0.5% (stat+ lumi)

• The combination of polarised crosssection, asymmetry and helicity angle measurements gives access to all relevant couplings - with percent to permille - level precision

Additional potential may exist with additional measurements and higher energy - potentially further improved BSM sensitivities Not studied yet...

LHC 14 TeV, 300 fb⁻¹

upling not yet directly observed

` upling

ILC (国際リニアコライダー) in Japan

- Japan has expressed interest to host ILC with the goal of a global project with substantial financial contributions from outside, and the establishment of an "international city"
 - A site choice has been made: 北上市 (Kitakami) in Northern Japan

ILC (国際リニアコライダー) in Japan

- Japan has expressed interest to host ILC with the goal of a global project with substantial financial contributions from outside, and the establishment of an "international city"
 - A site choice has been made: 北上市 (Kitakami) in Northern Japan
- Strong support by local government and population
- Over the next ~ 1.5 years, a review process with committees by the Japanese science ministry MEXT is taking place - physics case and technical issues
- First contacts on government level about international participation have started

Summary

- Linear colliders will be capable of producing top quarks in a very clean environment: Excellent conditions for precision measurements of top quark properties and couplings
- The invariant mass can be reconstructed with an experimental precision of O 100 MeV (stat+ syst), but suffers from substantial theoretical uncertainties
- A threshold scan provides the ultimate mass precision in a theoretically well-understood setting: Statistical uncertainties on the 20 - 30 MeV level, with comparable experimental systematics, studies of theoretical uncertainties ongoing
- ► Total uncertainty of ~ **100 MeV** or better in reach
- **Polarised beams** at linear colliders allow detailed measurements of top electroweak couplings with the separation of axial and vector and Z and γ contributions
 - · accuracies on the percent to permille level expected
- A direct measurement of the top Yukawa coupling via the ttH process on the 2 4% level (depending on integrated luminosity) at 1 TeV

Backup

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

Frank Simon (fsimon@mpp.mpg.de)

23

Systematics on Mass - Details

- Incomplete but looked at several key aspects:
 - Theory uncertainties currently based on simple scaling of cross section (1%, 3%) (10 MeV up to ~50 MeV, depending on fit strategy -> uncertainty mostly absorbed in α_s uncertainty for combined fits) - More sophisticated studies planned, based on results by Beneke et al., see next talk
 - Non-ttbar background: 5% uncertainty results in 18 MeV uncertainty on mass (After selection, the non-ttbar background cross section is ~ 70 fb, so 5% uncertainty can be reached with ~ 6 fb⁻¹ below threshold)
 - Beam energy: Expect 10⁻⁴ precision on CMS energy: ~30 MeV uncertainty on mass potential for further improvement?
 - Luminosity spectrum first study based on CLIC 3 TeV model (substantially more complicated than ILC): ~ 6 MeV uncertainty from fit of LS parameters

Systematics on Mass - Details

- Incomplete but looked at several key aspects:
 - Theory uncertainties currently based on simple scaling of cross section (1%, 3%) (10 MeV up to ~50 MeV, depending on fit strategy -> uncertainty mostly absorbed in α_s uncertainty for combined fits) - More sophisticated studies planned, based on results by Beneke *et al.*, see next talk
 - Non-ttbar background: 5% uncertainty results in 18 MeV uncertainty on mass (After selection, the non-ttbar background cross section is ~ 70 fb, so 5% uncertainty can be reached with ~ 6 fb⁻¹ below threshold)
 - Beam energy: Expect 10⁻⁴ precision on CMS energy: ~30 MeV uncertainty on mass potential for further improvement?
 - Luminosity spectrum first study based on CLIC 3 TeV model (substantially more complicated than ILC): ~ 6 MeV uncertainty from fit of LS parameters

"Interpretation" uncertainty:

Theory uncertainties are incurred when transforming the 1S mass used to describe the threshold to the MSbar mass - currently $O \sim 100$ MeV, depending on a_s precision and number of orders - significant reduction possible when needed

ILC Cost

ullet

- Rather solid cost estimate for the 500 GeV machine: ~ 8 Billion USD
- Biggest component: Main linac, acceleration structures

- The construction cost will be spread over ~ 10 years, and shared across the globe - details to be worked out!
- Many contributions

 expected "in kind":
 production of components
 "at home", installation in ILC

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014 Lab engineering

estimate

32%

25

Vendor

quote

11%

ILC - Current Schedule

Frank Simon (fsimon@mpp.mpg.de) Frank Simon (fsimon@mpp.mpg.de) fined by the diffeettom of Anotion for the t quark in the laboratory. As dis-

to

27

Reconstructing Top Quarks at Lepton Colliders

- Driven by production and decay: ●
 - Production in pairs, decay to W and b

Reconstructing Top Quarks at Lepton Colliders

- Driven by production and decay:
 - Production in pairs, decay to W and b

Event signature entirely given by the decay of the W bosons:

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

Frank Simon (fsimon@mpp.mpg.de)

Reconstructing Top Quarks at Lepton Colliders

- Driven by production and decay:
 - Production in pairs, decay to W and b

Event signature entirely given by the decay of the W bosons:

- At hadron colliders: Hard to pick out top pairs from QCD background Use one and two-lepton final states
- At lepton colliders: Top pairs easy to identify, concentrate on large branching fractions and controllable missing energy (not more than one neutrino!)

Analysis Strategy

- Identify the type of top decay according to number of isolated leptons
 - all-hadronic (0 leptons), semi-leptonic (1 lepton), leptonic (>1 lepton) -> rejected
- Jet clustering (exclusive kt algorithm) according to classification: 6 or 4 jets
- Flavor-tagging: Identify the two most likely b-jet candidates
- W pairing: Jets / leptons into W bosons
 - Unique in the semi-leptonic case: 1 W from two light jets, 1 W from lepton & missing Energy
 - 3 possibilities (4 light jets) in all-hadronic case Pick combination with minimal deviation from nominal W mass
- Kinematic fit Use Energy/momentum conservation to constrain event
 - Performs the matching of W bosons an b-Jets to t candidates
 - Enforces equal t and anti-t mass: Only one mass measurement per event
 - Provides already good rejection on non-tt background
- Additional background rejection with likelihood method based on event variables (sphericity, b-tags, multiplicity, W masses, d_{cut}, top mass w/o kin fit)

Analysis Challenges & Event Simulation - CLIC

- Key reconstruction challenge at CLIC: pile-up of $\gamma\gamma$ -> hadrons background, \bullet rejected with timing & pt cuts and with jet finding based on kt algorithm
 - Also relevant for ILC: No pile-up, but several $\gamma\gamma \rightarrow$ hadrons events / BX -Jet finding now follows CLIC experience
- Event generation with PYTHIA (for ttbar, LO) and WHIZARD, depending on final state
- Full GEANT4 detector simulation \bullet
- Reconstruction with PandoraPFA

no direct simulation of threshold currently using NNLO cross sections - TOPPIK, Hoang & Teubner -

type	final state	σ 500 GeV	σ 352 GeV	both at and above threshold 100 fb ⁻¹
Signal ($m_{top} = 174 \text{ GeV}$)	tī	530 fb	450 fb	assumed
Background	WW	7.1 pb	11.5 pb	
Background	ZZ	410 fb	865 fb	
Background	$q\bar{q}$	2.6 pb	25.2 pb	
Background	WWZ	40 fb	10 fb	
-		in a	, ddition: sin	gle top may be worth considerir

Mass Reconstruction Above Threshold

mass: substantial detector effects (peak width ~ 5 GeV compared to 1.4 GeV top width)

channel	<i>m</i> top	$\Delta m_{\rm top}$	$\Gamma_{\rm top}$	$\Delta\Gamma_{ m top}$
fully-hadronic	174.049	0.099	1.47	0.27
semi-leptonic	174.293	0.137	1.70	0.40
combined	174.133	0.080	1.55	0.22

Systematics - Invariant Mass above Threshold

- Still incomplete, but some key issues were investigated:
 - Possible bias from top mass and width assumptions in detector resolution: Below statistical error, no indication for bias found
 - Jet Energy Scale: Reconstruction of W bosons can be used to fix this to better than 1% for light jets, assume similar precision for b jets from Z and ZZ events: Systematics below statistical uncertainties of the measurement
 - Color Reconnection: Not studied yet depends on space-time overlap of final-state partons from t and anti-t decay - Expected to be less than in WW at LEP2: Comparable or smaller systematics on mass - less than 100 MeV

The key issue - and open question:

Above threshold the "PYTHIA mass" is measured - not well defined theoretically

- Substantial uncertainties in the interpretation of the measurements, far outweighs statistical uncertainties
- Some theory work in this direction already exists, but more is needed (also in in terms of connecting theory and experimental observables)

Systematics - Luminosity Spectrum

- Initial back-of-the envelope studies indicated possible systematics of 10s of MeV - mainly related to the shape of the main luminosity peak
- The challenge: Determining the shape (and normalization) of the luminosity spectrum from data
 - Accessible via energy and angle of e[±] from Bhabha events
 - Parametrized by a complex 19 parameter function, parameters determined from fits to Bhabha events (details: arXiv:1309.0372)

First CLIC study: application of 3 TeV model to 350 GeV not yet full simulations, scaled uncertainties

Systematics - Luminosity Spectrum

- Impact of reconstructed
 Iuminosity spectrum on threshold
 behavior
 - Currently still a small bias: slightly reduced peak luminosity in model (0.7% too low)
 - Reason understood, straightforward to correct

Global Results Summary - Luminosity Spectrum uncertainty for CLIC:

- 1D fit: $\Delta m_t = (\pm 22 \text{ (stat)} \pm 5.3 \text{ (lumi parameters)} 22 \text{ (lumi reco)}) \text{ MeV}$
- 2D fit: $\Delta m_t = (\pm 34 \text{ (stat)} \pm 6.0 \text{ (lumi parameters)} + 5.5 \text{ (lumi reco)}) \text{ MeV}$

 $\Delta \alpha_s = (\pm 9 \text{ (stat)} \pm 2.5 \text{ (lumi parameters)} + 10 \text{ (lumi reco)}) \times 10^{-4}$

