Single Top Quark Production at Tevatron

Manfredi Ronzani

Albert-Ludwigs-Universität Freiburg

on behalf of the CDF and DØ Collaborations Top2014 Cannes, September 29th, 2014

- Introduction
- Motivations
- Inclusive Production (s+t)
 - CDF s+t (I+jets 7.5 fb-1 & Met+jets 9.5 fb-1) input
 - CDF s+t combination 9.5 fb-1
 - DØ s+t 9.7 fb-1
 - Tevatron Combination
- s-channel Production
 - DØ s-ch
 - CDF s-ch (I+jets & Met+jets)
 - Tevatron Combination -> First Observation!
- Summary

- Run II: √s = 1.96 TeV
- In operation from 2002 to September 30th, 2011 (Shutdown)
- Total integrated Luminosity delivered by Tevatron: ~12 fb⁻¹
- CDF & DØ luminosity acquired ~10 fb⁻¹ (full dataset)
- Instantenous luminosity record: $\approx 4.03 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Top quark observed at Tevatron in 1995, by CDF & DØ

- Mostly via QCD pair production
- $M \simeq 173 \text{ GeV}$
- $\tau \simeq 5.10^{-25}$ s: no top-flavoured hadrons!
 - Nearly 100% decay to Wb
 - Opportunity to study a "bare" quark!
- Coupling to Higgs boson ~ 1
- First evidence by CDF in 1994; Observation in 1995 by CDF/D0;

Single Top Production at Tevatron

- Production via EW in 3 channels: s, t, Wt;
- First Observation by CDF & D0 in 2009; Phys.Rev. Lett., 103:092002, 2009;
- Tevatron and LHC both sensitive to t-ch; Tevatron not sensitive to Wt-ch but advantage on s-ch!

at LHC 5 times more signal but 15 times more background.... will be very challenging also at RunII since processes like ttbar increase more than s-ch production!

Detector/ σ (pb)	s-ch	t-ch	Wt-ch
Tevatron	1.05	2.08	0.25
LHC (8Tev)	5.55	87.2	11.1

arXiv: 1311.0283

Motivations

$\sigma_{\text{single top}} \propto |V_{tb}|^2$

- Direct measurement of |V_{tb}| CKM matrix element;
- Does unitarity holds? $|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1$

$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{uX}? \\ V_{cd} & V_{cs} & V_{cb} & V_{cX}? \\ V_{td} & V_{ts} & V_{tb} & V_{tX}? \\ V_{Yd}? & V_{Ys}? & V_{Yt}? & V_{YX}? \end{pmatrix}$

Sensitivity to new physics

- t-ch: FCNC
- s-ch: heavy W', Top pion

The Challenge

Single top quark production with decay into W + 2 Jets (dominated by W+jets):

final state hidden behind large backgrounds with large uncertainties (i.e. W+HF uncertainty ~ 30%)

MVA using Multiple variables combined into a single more powerful discriminant to separate S from B

Event Selection

<u>1) I+jets</u>

- One high-p_T isolated lepton (e,mu)
- Missing transverse energy *⊭*_T
- 2 or 3 jets
- At least one b-tag

- No isolated lepton (e,mu)
 - ➡ Leptons vetoed, orthogonal to I+jets
- Large MET > 35 GeV
- 2 or 3 jets
- At least one b-tag

Orthogonal Event Selections: (2) adds 33% acceptance to (1)

柋

Electroweak/Top: Single Top, ttbar, diboson

- modeled by Monte Carlo (MC)
 - single top: роwнев (CDF), сомрнер (D∅)
 - ttbar: Pythia (CDF), Alpgen (DØ)
 - diboson, WH: рутніа
- normalized to theoretical cross section

W+jets:

- modeled by ALPGEN+PYTHIA Monte Carlo (MC)
- normalisation and flavour composition from data

Mistags:

- falsely tagged light quark or gluon jet
- mistag probability from data

Z+jets: modeled by **ALPGEN+PYTHIA** MC

Multijet:

Normalisation and shape from data-driven model

s+t Inclusive Production and Measurement at Tevatron

CDF II Preliminary 7.5 fb⁻¹

tī

+ CDF Data

W+HF

W+LF Z+Jets

Diboson IQCD

400

Single Top

W + 2 Jets, 1 b-Tag

100

Events / [12 GeV/c²]

600

400

200

Strategy

- Lepton+jets with 7.5 fb-1 of CDF data
- Subsamples wrt #jets and #b-tags (2J1T...3J2T)
- NNs trained with 11-14 variables
 - Use s-ch as signal in only 2J2T and t-ch for the rest
- Validate data-bg agreement in OT Control Region
- Use admixture of systematics shifted samples
 - ➡ 3% improvement

CDF lvbb s+t Analysis

Single Top s+t+Wt Cross Section

- Measure cross section using maximum likelihood fit to the binned NN output distributions
- Integrate the posterior probability density over the parameters associated with all sources of systematic uncertainties
- First inclusive measurement with Wt-ch at CDF!

σ_{s+t+Wt} = 3.04 ^{+0.57}_{-0.53} (stat+syst) pb (± 19%)

Single Top t-channel VS s-channel 2D fit

- 2D plane (σ_{s} , $\sigma_{(t+Wt)}$)
- The t-channel and Wt processes are combined as they share the same final-state topology.

$$\sigma_{s} = 1.81 + 0.63 - 0.58 \text{ pb}$$

 $\sigma_{(t+Wt)} = 1.66 + 0.53 - 0.47 \text{ pb}$

arXiv:1407.4031 [hep-ex]

Strategy

- MET+jets with full CDF dataset 9.5 fb-1
- Completely orthogonal dataset to l+jets selection
- Subsamples wrt #jets and #b-tags (2J1T...3J2T)
 - Latest CDF HOBIT multiavariate tagger used
- Dedicated NN used to discriminate QCD, V+jets and ttbar for s-ch and t-ch
- 1D posterior obtained for σ_{s+t} assuming constant SM σ_s/σ_t

Results

IV_{tb}I > 0.63 at 95% CL

20

18

16

12

10

8.4

Posterior probability density

The results of the two s+t analyses (I+jets and MET +jets) are combined by taking the product of their likelihoods and simultaneously varying correlated uncertainties

CDF note 11033

Strategy

- Basically one analysis doing everything with 9.7 fb⁻¹ of DØ data
 - s-channel, t-channel, s+t channel measurements
- DØ used three different techniques: BDT, BNN, ME
 - Each method selects different event kinematics ➡ Around 75% correlation

2

tb cross section [pb]

DØ Single Top Analysis

s+t cross section

- Combination of the 3 MVAs in a BayesianNN
- 1D posterior obtained for σ_{s+t} integrating over σ_t with no assumption on SM $\sigma_s^{}/\sigma_t^{}$

$\sigma_{s+t} = 4.11 + 0.60 - 0.55 \text{ pb (±14\%)}$ IV_{tb}I > 0.92 at 95% CL tqb cross section [pb] 5<mark>⊢(a)</mark> DØ 9.7 fb⁻¹ SD SD 3 SD easurement Four generations Top-flavor Top pion FCNC

s-ch VS t-ch cross section

- 2D final discriminant sensitive to s-, t-ch
- Integrating over $\sigma_{\!_{t}}$ and extract $\sigma_{\!_{s}}$ and vice-versa

σ_s= 1.10 ^{+0.33} _{-0.31} pb (±29%)

Manfredi Ronzani

Tevatron s+t Combination

Single top quark, Tevatron Run II, L_{int} ≤ 9.7 fb⁻¹

Last Single Top legacy measurements from Tevatron!

- σ_{s+t} VS σ_t with **L<9.7 fb-1**
- Vtb
- Combines CDF and D0 analysis, fitting simultaneously D0 and CDF combined inputs (discriminants)
- 1D posterior on σ_{s+t} obtained by integrating 2D posterior over σ_t with no assumption on SM σ_s / σ_t

Top2014, Cannes

Manfredi Ronzani

IVtbl Matrix Element Extraction

- \bullet $V_{tb}:$ same MVA discriminants as for s- and t-channel cross sections
- form a Bayesian posterior p.d. for $|V_{tb}|^2$ assuming a "flat" prior with no assumption on SM $\sigma_{\!_S}/\sigma_{\!_t}$

IV_{tb}I > 0.92 at 95% C.L.

Fermilab-CONF-14-370-E

s-channel Production and Observation at Tevatron

s-channel I+jets & MET+jets with full CDF dataset 9.5 fb⁻¹

- New I+jets and MET+jets s-channel optimized analyses based on Higgs search techniques and selection
- Use CDF full Run II data set, new HOBIT tagger, extra lepton trigger adds 10% more leptons
- Both use MVA discriminant sensitive to s-channel only

CDF s-channel Combination

Tevatron s-channel Combination

Tevatron s-channel Observation

First observation of s-channel single top production!

- Single Top was observed at CDF&D0 in 2009
- Now, Single Top program at Tevatron is (almost) complete!
 - ✓ All measurements in agreement with SM prediction!
 - ✓ At least for single top cross section, this is the final measurement by Tevatron!
- New s+t Tevatron combination has been performed
- s-channel was the last missing block in ST -> Observed!

Thanks for the attention!

CDF & DØ detectors

- A new b-jet identification algorithm optimized for H \rightarrow bb searches: HOBIT
- Two different HOBIT cuts are used: tight b-tag (T), loose b-tag (L)

Systematic uncertainty	CDF		D0		Corre-
	Norm	Dist	Norm	Dist	lated
Lumi from detector	4.5%		4.5%		No
Lumi from cross section	4.0%		4.0%		Yes
Signal modeling	2 - 10%	•	3–8%		Yes
Background (simulation)	2 - 12%	•	2 - 11%	•	Yes
Background (data)	15-40%	•	1950%	•	No
Detector modeling	2 - 10%	•	1–5%	•	No
b-jet-tagging	1030%		1540%	•	No
JES	0 - 20%	•	9 - 40%	•	No

<u>s-ch Observation</u>

total expected uncertainty: 20% expected uncertainty w/o systematics: 14%

<u>s+t Tevatron</u>

total expected uncertainty: 13% expected uncertainty w/o systematics: 8%

Manfredi Ronzani

30

- $\sigma(s+t+Wt) \propto |V_{tb}|^2$ so we can extract the matrix element, assuming:

 - SM top quark decay: |V_{td}|²+|V_{ts}|²«|V_{tb}|²
 V-A and CP conserving Wtb vertex
 No assumption on # of families or CKM unitarity
- $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} a \\ s \\ b \end{pmatrix}$
- additional systematic uncertainties: theoretical uncertainty on single top cross section

Tevatron s+t Discriminant

without background subtraction:

➡ t-channel SR at the left, the s-channel SR at the right.

Tevatron s+t Combination & BSM

