

Latest results on differential cross sections at the LHC and Tevatron

Carmen Diez Pardos (DESY) for the ATLAS, CDF, CMS, D0 collaborations

Talk prepared with the help of F. Spanò (RHUL)

7th International Workshop on Top Quark Physics, Sept. 29-Oct. 3, 2014, Cannes (France)

Introduction

- Why differentially?
 - Scrutinise theory, predictions & models
 - Enhance sensitivity to new physics
 - Extract/use for PDF fits
 - Background for Higgs, rare processes and many BSM searches

Cross section measurements presented:

- Top quark pairs (I+jets, dilepton channel) at Tevatron and LHC
 - Focus on what we learnt since last year (tension and agreements between ATLAS/CMS)
 - Exploring wider kinematic ranges (boosted tops)
- First single top quark differential measurements (t-channel) in ATLAS and CMS

General analysis strategy

- Event selection
- 2 Top quark kinematic reconstruction
- 3 Bin-wise cross section measurement:
- Subtract background
- Unfolding: correct for detector effects & acceptance to particle or parton level in full or visible phase space
 - Regularisation used to remove large statistical fluctuations
 - Δ_X bin width: chosen to limit migration effects (in terms of stability and purity, resolution and statistical errors in data)
- **3** Compare diff. cross section to theory predictions/calculations: Absolute or normalised to in-situ measured σ extrapolated to full or in the visible phase space (minimise dependence on theory input)

 σ vs several kinematic distributions of top quark, $t\bar{t},$ (b)-jets, leptons, lepton pairs, etc.

C. Diez Pardos (DESY)

$t\overline{t}$ production cross sections

• $t\bar{t}$ lepton+jets channel

- CDF: PRL 102 222003 (2009)
- D0: arXiv:1401.5785 NEW!
- ATLAS: arXiv:1407.0371 (7 TeV), accepted by PRD NEW!, ATLAS-CONF-2014-059 (7 TeV) NEW! ATLAS-CONF-2014-057 (8TeV) NEW!
- CMS: EPJ C73 (2013) 2339 (7 TeV), CMS-PAS-TOP-12-027 (8 TeV)

• $t\bar{t}$ dilepton channel

• CMS: EPJ C73 (2013) 2339 (7 TeV), CMS-PAS-TOP-12-028 (8 TeV)

tt

$t\bar{t}$: Typical event selection

Dilepton

- At least two isolated leptons ($p_T > 20$ GeV, $|\eta| < 2.4$), opposite sign
- 2 jets (anti-k_7, R<0.5) with p_7 > 30 GeV, $|\eta| <$ 2.4
- 3 Additional QCD and Z veto (in *ee*, $\mu\mu$)
- At least one b-tagged jet

${\sf Lepton+jets}$

- ② ≥4 jets (anti-k_T, R=0.5/0.4) with $p_T > 25$ -35 GeV, $|\eta| < 2.0$ -2.5
- Veto additional leptons
- () $\geq 1/2$ b-tagged jets
- $\begin{array}{|c|c|c|} \hline & E_T^{miss} > 20\text{-}35 \ \mathrm{GeV}, \\ & \mathsf{M}_{W,T} > 35 \ \mathrm{GeV}, \ \mathrm{leading \ jet} \end{array}$

+ Kinematic reconstruction of top quarks (back up)

C. Diez Pardos (DESY)

Kinematic distributions (ATLAS/CMS/D0)

tī

- Events / GeV 10⁴ ATLAS e+jets vs=7 TeV L dt = 4.6 fb⁻¹ Data 10³ tf (I+jets) Entries (a) DØ $\mathscr{L} = 9.7 \, \mathrm{fb}^{-1}$ tf (dilepton) 10 300 Single top - Data W+iets tt(l+iet) Multijet tīdu Other Dibosor 200 Singletop Z+iets 10 W+iets Multijet 100 10-2 10-3 1.5 Data/Prediction Ratio 1.5 0.5 0.5 600 800 1000 1200 0 200 400 ō 200 400 600 800 1000 1200 ptf [GeV] $m(t\bar{t})$ [GeV] CMS. 19.7 fb⁻¹ at vs = 8 TeV CMS, 19.7 fb⁻¹ at (s = 8 TeV fop quarks / 0.1 Top quarks / 20 GeV e/u + Jets Combined e/u + Jets Combined Z / v + Jets Z / v'+Jets ti+7/W/v tt+Z/W/v tf Signal tf Signa Diboson tt Other Diboson Single Top W Uncertainty tt Other Single Top 💹 Uncertainty W+Jets W+Jets 1.4 1.4 12 Z Z_{Dans} 0.8 0.8 0.6 50 400 450 500 -25 -2 -15 -1 -0.5 0 0.5 1.5 2 25 100 150 200 250 300 350 1 pt [GeV] TOP2014, 29 September 2014 6/39
- Pure $t\bar{t}$ sample (~80%)
- Main backgrounds:
- ♦ I+jets: W+jets, other $t\bar{t}$, single top
- ◊ dilepton: other $t\bar{t}$, single top, Z+jets
- Reference MC
 ATLAS: Alpgen+Herwig
 CMS: MadGraph+Pythia
 D0: MC@NLO+Herwig

Kinematic distributions: boosted tops (ATLAS NEW!)

tt

Lepton+jets: boosted tops

- **1** Lepton: p_T -dependent isolation, close to a R(=0.4) jet $\Delta R(I,jet_{R=0.4}) < 1.5$
- Top jet candidate reconstructed using leading anti-k_T, R=1 jet, with p_T > 300 GeV, applying jet substructure cuts
- Leptonic and hadronic candidates in opposite hemispheres
- $4 \geq 1$ b-tagged top candidate
- Reference MC: Powheg+Pythia
- Prediction overestimates data, shape well described
- p_T > spectrum softer in data (up to approx. 50% highest bin)
 C. Diez Pardos (DESY)

tī

Results at Tevatron: $m_{t\bar{t}}$ CDF (2.7 fb⁻¹), D0 (9.7 fb⁻¹)

- Absolute differential cross section
- General good agreement between data and predictions for both CDF & D0
- D0: ALPGEN+Pythia gives lower normalisation

tī

$|y_T^t|$ and p_T^t (D0)

- General good description
- ALPGEN+Pythia gives lower normalisation
- MC@NLO+Herwig and both approx. NNLO calculations describe data better

Results at LHC

Results at the LHC: From TOP2013 to TOP2014

tī

A. Juste (Summary talk TOP2013)

Comparison ATLAS-CMS (7 TeV in same binning): see here (CERN-THESIS-2014-110)

C. Diez Pardos (DESY)

Results at LHC

Progress in comparison between ATLAS & CMS

- 7 TeV results, I+jets
 - ATLAS and CMS have consistent definition of the top quark
 - Compatible behaviour in corresponding sample pairs: same differences between generator and parton shower schemes

tŦ

Monte Carlo simulations

- Generators:
- ◊ ME at tree level (Alpgen, MadGraph)
- ◊ NLO (POWHEG, MC@NLO)
- Showering:
- Pythia (transverse-momentum-ordered evolution scale)
- ◊ HERWIG (angular-ordered)
- Powheg+Herwig provides reasonable description of the data for both experiments (different treatment of the hardest ISR than Pythia)

p_T^t , ATLAS (7 TeV), CMS (8 TeV)

Comparison to MC generators

- ATLAS: ALPGEN, POWHEG+Pythia are above data for $p_T > 200$ GeV
- CMS: MadGraph, MC@NLO, POWHEG+Pythia show similar behaviour. Consistent with dilepton channel and 7 TeV results

tt

• CMS/ATLAS: POWHEG+Herwig describes data better

• Total uncertainties: ${\sim}3\%{-}{\sim}15\%$

tī

p_T^t , ATLAS (7 TeV), CMS (8 TeV)

Comparison with Approx. NNLO

CMS: Softer spectrum in data, better described by Approx. NNLO

• ATLAS: theory calculation is slightly above data for $p_T < 50$ GeV and $p_T > 200$ GeV

tt

Boosted $t\bar{t}$: p_T^t ($p_T^t > 300 \text{ GeV}$) ATLAS (8 TeV) NEW!

- Fiducial particle level and full phase space parton level, up to the TeV scale
- Data/MC agreement: better at parton-level than at particle-level for Powheg, MC@NLO, Alpgen+Herwig
- All generators: harder spectrum, increasing with p_T (discrepancy: 30% to 70%)
- Total uncertainties ~15-30% (particle level), ~20-40% (parton level)
- Result qualitatively consistent with 7 TeV
- EW corrections: softer spectrum, not significant improvement
- Also investigated modelling radiation in Powheg (back up)

C. Diez Pardos (DESY)

TOP2014, 29 September 2014

Top rapidity, y^t CMS (8TeV)

• General good agreement between data and predictions, also with Approx. NNLO

tī

- MadGraph+Pythia is slightly more central than data
- Compatible results in both channels and with 7 TeV results

- Typical precision: 2–6% depending on the bin
 - C. Diez Pardos (DESY)

tī

$m_{t\overline{t}}$ ATLAS (7 TeV), CMS (8 TeV)

- In general the predictions are softer than data for ATLAS and CMS
- → Best description: POWHEG+Herwig, MadGraph+Pythia (CMS)
- NLO+NNLL softer than data (ATLAS/CMS)

C. Diez Pardos (DESY)

Results at LHC

tī

$p_T^{t\bar{t}} \& y^{t\bar{t}}$ ATLAS (7 TeV), CMS (8 TeV)

- CMS: MadGraph+Pythia, MC@NLO+Herwig better description of data
- NLO+NNLO calculation does not describe data well (ATLAS/CMS)
- Typical precision: 2-10% (y), 5-20% (p_T)

C. Diez Pardos (DESY)

Visible cross section: leptons, b jets CMS, 8 TeV

• Normalised cross section in visible phase space (leptons, b jets p_T , η cuts)

tī

- $p_T(I, b \text{ jets})$ softer than the predictions
- Typical precision: 5–10% per bin
- Consistent results dilepton I+jets channels
- CMS: Results consistent with 7 TeV measurement

Results at LHC

tī: "Pseudo-top-quark" ATLAS (7 TeV) NEW!

• Variables constructed from objects directly related to detector-level observables (jets, leptons and missing transverse momentum)

tī

- \rightarrow Details in J. Katzy's talk
- Absolute cross section in the visible phase space, compared to LO and NLO models.

Single top: t-channel

tī

ATLAS (7 TeV): arXiv:1406.7844, submitted to PRD CMS (8 TeV): CMS-PAS-TOP-14-004 NEW!

Selection and top reconstruction

Kinematics of the top quark might depend on the PDFs and/or can improve QCD modeling of top production

Typical selection:

- Exactly one isolated lepton (e/μ), p_T > 25-30 GeV, |η| < 2.1-2.5
- Only 2 jets p_T >30-40 GeV and $|\eta| < 4.5$
- \geq 1 b-tagged jet ($|\eta|$ <2.5)
- MET, $M_T > 30-50 \text{ GeV}$
- ATLAS: QCD multijet veto
- + Kinematic reco. top quark (back up)

- Main backgrounds: *tt*, W+jets
- Reference MC: PowHeg+Pythia (4FS Atlas, 5FS CMS)

- Use MVA to separate signal and background
- $\diamond~$ ATLAS: S/B \sim 1-2
- \diamond CMS: S/B \sim 0.5

C. Diez Pardos (DESY)

 $\frac{d\sigma}{d p_T(t)} \left[\frac{pb}{GeV} \right]$

Data / NLO

Single top: (Anti-)Top p_T ATLAS (7 TeV) & CMS (8 TeV) NEW!

- CMS: normalised cross section well described by POWHEG+Pythia, aMC@NLO, CompHEP
- ATLAS: absolute cross section. Good agreement with NLO prediction (MCFM) and between t/\bar{t} rates

(Normalised cross sections in backup)

Dominated by the total syst. uncertainty (1-3 times larger than the statistical one)

Single top: (Anti-)Top |y|ATLAS (7 TeV) & CMS (8 TeV) NEW!

- CMS: normalised cross section well described by POWHEG+Pythia, aMC@NLO, CompHEP
- ATLAS: absolute cross section. Good agreement with NLO prediction (MCFM) and between t/\bar{t} rates

(Normalised cross sections in backup)

Dominated by the total syst. uncertainty (1-3 times larger than the statistical one)

 $|y(\bar{t})|$

C. Diez Pardos (DESY)

TOP2014, 29 September 2014

Summary and Outlook

- Presented *tt* cross section as a function of different kinematic variables (syst. dominated)
 - Normalised and absolute cross sections
 - ♦ Full phase space and visible phase space, particle and parton level
 - $\diamond~d\sigma/dp_T$ extended to 1 TeV regime
- In general, reasonable description of data, some discrepancies observed between data and certain predictions for tt cross sections
 - \rightarrow Measured spectrum is generally softer than predictions (ie. p_T^t , $m_{t\bar{t}}$)
 - → Comparison between ATLAS & CMS: consistent definition of the top quark (top parton after radiation), default generators (CMS MadGraph+Pythia, ATLAS Alpgen+Herwig) are similar
- Differential measurements performed for the first time in single top: Good agreement between data-predictions observed
- Single top: total systematic uncertainties larger than statistical one
- Consistent result among channels, measurements and experiments.
- Looking forward to having the full NNLO calculations

C. Diez Pardos (DESY)

BACK UP

Monte Carlo $t\bar{t}$: CMS & ATLAS

Matrix element	Shower & Hadronization	PDF	Tune		
MC@NLO v4	Herwig 6.5 + Jimmy 4.31	cteq66 or CT10	AUET1/2		
Powheg	Pythia 6	cteq66 (7 TeV) or CT10 (8 TeV)	Perugia 2011 C		
Alpgen	Herwig 6.5 + Jimmy 4.31	cteq6ll	AUET2		

смѕ

Matrix element	Shower & Hadronization	PDF	Tune	
MadGraph v5	Pythia 6	cteq6l	Z2 (7 TeV) Z2* (8 TeV)	
Powheg	Pythia 6	cteq6m (7 TeV) CT10 (8 TeV)	Z2 (7 TeV) Z2* (8 TeV)	
MC@NLO v3.4	Herwig 6 + Jimmy	cteq6m	default tune	

T. Pfeiffer, TOP2013

Monte Carlo $t\bar{t}$: CDF & D0

CDF

Matrix element	Shower & Hadronization	PDF	Tune
Pythia 6	Pythia 6	cteq5l	Tune A or Tune A-pro
Powheg	Pythia 6	cteq66	Tune A-pro

D0

Matrix element	Shower & Hadronization	PDF	Tune Modified Tune A			
Alpgen	Pythia 6	cteq6l	Modified Tune A			
MC@NLO	Herwig 6	cteq66	Modified Tune A			

T. Pfeiffer, TOP2013

Kinematic reconstruction

Dilepton

Due to the 2ν the system is underconstrained

- $\diamond m_W \equiv$ 80.4 GeV, $m_t \equiv m_{\overline{t}}$ fixed
- $\diamond \ p_T^{\nu_1} + p_T^{\nu_2} = E_T^{miss}$
- \diamond vary m_T between 100-300 GeV (1 GeV steps) to account for resolution effects
- o prefer solutions with b-tagged jets
- choose solution with best reco. neutrino energy w.r.t MC spectrum

Kinematic reconstruction

$Lepton+jets\ -\ CMS/D0$

- Vary 4-momenta of leptons, jets, neutrino within resolutions
- Constraints: $m_t = m_{\bar{t}}$, $m_{qq} = m_{l\nu} = m_w = 80.4$ GeV
- D0: $m_t = 172.5 \text{ GeV}$
- Limit permutations: consider 4-5 leading jets, use b-tag information
- Take 4-jet permutation with min. χ^2

Lepton+jets - ATLAS

- max. likelihood fit to the measured objects to a LO representation of the *tt* decay
- Leptonic top: fitted lepton, ν , b-parton
- Hadronic: remaining 3 partons

Kinematic distributions: Top decay products

C. Diez Pardos (DESY)

 \diamond

 \diamond

$t\bar{t}$: Comparison CMS & ATLAS I+jets, 7 TeV

Ref: CERN-THESIS-2014-110

$t\bar{t}$: Comparison between NLO PDF ATLAS (7 TeV)

32/39

Boosted $t\bar{t}$: Particle/partonic top ATLAS (8 TeV)

PDF constraints measurements of $t\bar{t}$ production arXiv:1406.0386

Full PDF fit at NNLO using HERAFitter, DGLAP parton evolution. Data:

- in ep collisions (combined HERA I [JHEP 1001:109 (2010)])
- asymmetry in W production at 7 TeV [CMS: Phys. Rew. D 90 (2014) 032004]
- Inclusive tt
 CMS JHEP11 (2012) 067, CMS-PAS-TOP-12-007, ATLAS ATLAS-CONF-2012-024, ATLAS-CONF-2012-149
- Differential cross sections 7 TeV: CMS Eur. Phys. J. C73 (2013) 2339; ATLAS [arXiv:1407.0371]

Moderate improvement of the uncertainty on the gluon distribution for x > 0.1, significant change of the shape

aNNLO prediction for ptT implemented via DiffTop in HERAFitter, http://difftop.hepforge.org/ C. Diez Pardos (DESY) TOP2014, 29 September 2014

$t\bar{t}$: Comparison between data/predictions ATLAS (7 TeV)

Variable	Alpgen+	HERWIG	MC@NLC	+Herwig	Powheg-	-Herwig	Powheg-	+Pythia	NLO	QCD	NLO+1	NNLL
	$\chi^2/{ m NDF}$	p-value	χ^2/NDF	p-value	$\chi^2/{ m NDF}$	p-value	χ^2/NDF	$p ext{-value}$	$\chi^2/{ m NDF}$	p-value	$\chi^2/{ m NDF}$	p-value
p_{T}^{t}	24./6	0.00	8.0/6	0.24	4.8/6	0.57	19./6	0.00	9.5/6	0.15	7.6/6	0.27
$m_{t\bar{t}}$	2.6/4	0.63	6.9/4	0.14	5.5/4	0.24	13./4	0.01	5.5/4	0.24	5.9/4	0.20
$p_T^{t\bar{t}}$	4.2/3	0.25	0.5/3	0.93	4.1/3	0.26	21./3	0.00	14./3	0.00	9.9/3	0.02
$ y_{tar{t}} $	1.6/2	0.45	3.4/2	0.18	4.3/2	0.11	4.8/2	0.09	3.7/2	0.16		

Single top: (Anti-)Top p_T , η ATLAS (7 TeV)

- Normalised cross section
- Dominant uncertainty: Statistical uncertainty
- Good agreement with NLO prediction and between t/\bar{t}

Top quark production

 $t\bar{t}$ production mainly by gluon fusion at LHC (~80% at 7-8 TeV)

t production via EWK interaction

$$\begin{split} \sigma &= 64.57^{+2.63}_{-1.74}\,\mathrm{pb}~@~7\,\mathrm{TeV}\\ \sigma &= 87.76^{+3.44}_{-1.91}\,\mathrm{pb}~@~8\,\mathrm{TeV} \end{split}$$

$$\begin{split} \sigma &= 4.63^{+0.20}_{-0.18}\,\mathrm{pb}\,\,@\,\,7\,\mathrm{TeV}\\ \sigma &= 5.61\pm0.22\,\mathrm{pb}\,\,@\,\,8\,\mathrm{TeV}\\ \mathrm{Phys.\,Rev.\,D}\,81,\,054028\,(2010) \end{split}$$

• Full NNLO+NNLL calculation available [Czakon, Fiedler, Mitov, arXiv:1303.6254]

Collider	$\sigma_{\rm tot} \ [{\rm pb}]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

Phys. Rev. D 82, 054018 (2010)

Cross section calculated at NLO+NNLL

C. Diez Pardos (DESY)

Phys. Rev. D 83, 091503(R) (2011)

Top quark decay signatures

single-top is BG for $t\bar{t}$ (and vice-versa)

C. Diez Pardos (DESY)

TOP2014, 29 September 2014

MFT

iet

b-iet

Selection and top reconstruction

Kinematics of the top quark might depend on the PDFs and/or can improve QCD modeling of top production

Top reconstruction

Typical selection:

- Exactly one isolated lepton (e/μ), p_T > 25-30 GeV, |η| < 2.1-2.5
- Only 2 jets p_T >30-40 GeV and $|\eta| < 4.5$
- 1 b-tagged jet ($|\eta|$ <2.5)
- $\bullet~$ MET and $M_{\mathcal{T}} >$ 30-50 GeV
- ATLAS: QCD multijet veto

- Top quark candidate reconstructed from W boson and b-tagged jet
- W boson from lepton and MET: |p^ν_z| inferred by constraint on M_W
- ightarrow Two real solutions: Choose the one with smallest $|p_z^{
 u}|$
- \rightarrow Imaginary solution: Minimal variation of MET so that $M_T = M_W$