

Single top measurements (and V_{tb}) at the LHC

Abideh Jafari UCLouvain and FNRS for the CMS collaboration prepared with the help of Jose Garcia (ATLAS)

7th International Workshop on Top Quark Physics Physics, 29 Sept.- 03 Oct., Cannes, France

Introduction

Discovery at Tevatron via Super Discriminant while LHC is a top factory

Why single-top?

- Sensitive to new physics!
 - FCNC, Anomalous couplings
 - New particles (W', H^{\pm})
- Characteristic scenario for **SM** measurements
 - Top polarization, W helicity, top mass, $|V_{tb}|$
- Background in searches
 - SUSY, Higgs

We will look at production cross sections (all), $|V_{tb}|$ (t-, tW-channel), properties (t-channel) ²

T-CHANNEL FOCUS ON NEW RESULTS

N. Kidonakis (Phys. Rev. D 83 2011):

- 8 TeV: 87.8^{+3.4}_{-1.9} pb
- 7 TeV: 64.6 ± 3.4 pb

t-channel cross section

 $W^++b\overline{b},c\overline{c}$,light jets Z+jets, diboson

0.8

 $O_{\rm NN}$

0.6

1406.7844v1, (to PRD)

Multijet

////, Uncertainty band

2000

1000

0.2

0.2

0.4

<u>Data-Pred.</u> Pred.

- Generic selection and a topological cut again QCD multijets (see backup).
- 4 signal categories: 2J1T (ℓ^+ , ℓ^-) and 3J1T (ℓ^+ , ℓ^-)
 - Looser b-tagging to validate backgrounds (tight b's vetoed)
- A 3J2T to control b-tagging efficiency
- Simultaneous fit to NN output in 4 regions
- Systematic uncertainties from pseudoexperiments

t-channel cross sections: |V_{tb} | in 7 TeV

ATLAS		Theory <u>PRD 83 (2011)</u>	ATLAS 4.6 fb ⁻¹ 1406.7844v1	CMS 1.14 fb ⁻¹ JHEP12(2012) 035	CMS
	σ (t-chan)	$64.6 \pm 3.4 \text{ pb}$	68 ± 8 pb	$67.2 \pm 6.1 \text{ pb}$	

= 172.5 GeV

ATLAS:
$$|V_{tb}| = 1.02 \pm 0.07$$

 $|V_{tb}| < 1 \implies 0.88 < |V_{tb}| <= 1 @ 95\%$ C.L.

IVIS: $|V_{tb}| = 1.020 \pm 0.049$ $|V_{tb}| < 1 \implies 0.92 < |V_{tb}| <= 1 @ 95\%$ C.L.

- Measurement in a fiducial volume
- Fit to NN output in the signal (2J1T) region
- Backgrounds as constrained nuisance parameters
 - Validated in 2J2T ($t\bar{t}$) and 2J0T (W+jets)
- Systematics from pseudo-experiments
- How? A truth (fiducial) phase space close to *selected data*
 - Truth objects (leptons, jets,...) defined close to reco. ones using final state particles.

 $\sigma_{fid} = 3.37 \pm 0.05(stat.) \pm 0.47(syst.) \pm 0.09(lumi.) \text{ pb}$

• Main benefit:

- Marginal effect due to acceptance
- Affected mainly by efficiencies so less model-dependent
- Understand the acceptance in comparison with the inclusive measurement

	Generator	PDF	Total
Fiducial	8%	1%	14%
Inclusive	13%	4%	17%

Signal

generator

JES

NEW

ATLAS-CONF-2014-007

NEW

NEW

t-channel total cross section [pb]

NN-Discriminator

Anomalous tWb couplings in t-channel

- NEW
- Deviations from SM in the **tWb** structure affects the single-top cross section

$$L = -\frac{g}{\sqrt{2}} \,\overline{b} \,\gamma^{\mu} (f_{V}^{L} P_{L} + f_{V}^{R} P_{R}) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \,\overline{b} \,\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}} (f_{T}^{L} P_{L} + f_{T}^{R} P_{R}) t W_{\mu}^{-} + \text{h.c.}$$

- Dedicated search for anomalous couplings in the *production* and *decay*
- Early ATLAS result, $-0.20 < Im(f_T^R) < 0.3 @95\% CL (ATLAS-CONF-2013-032)$
- Generic selection and a cut on a QCD BNN against QCD (see backup)
- Signal categories, used in statistical analysis: 2J1T, 3J1T, 3J2T
- **Background modeling**: 2J0T and 3J0T (W+jets), 4J2T ($t\bar{t}$), normalization as constrained nuisance parameters
- Two types of MVA used
 - SM BNN discriminates SM 1500 single-top from SM backgrounds
 - **aWtb BNN,** extracted from the model, used against all SM to limit f_V^R or f_T^L separately
- A 2D fit to both MVA's

Anomalous tWb couplings in t-channel

NEW

Top quark polarization

 The sample is statistically a mix of ↑ and ↓ top quarks

• We measure the spin asymmetry:

$$A_{l} \equiv \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)} = \frac{1}{2} \cdot P_{t} \cdot \alpha_{l}$$

New physics in tWb vertex alters the top polarization Single-top quark in t-channel: produced 100% polarized in the direction of charged lepton due to V-A coupling $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{1}{2} (1 + P_t \alpha_t \cos \theta^*)$

 $\theta^* \equiv \measuredangle (l, q')$ in top rest frame

CMS-TOP-13-001

CN

Correlation degree or spin analyzing power SM: $\alpha_l \approx 1$ for charged lepton

Experimentally:

we select the t-channel event: 1 lepton + 1 light jet + 1 b-tagged jet + \dots

top polarization

Top quark polarization

- 1. Determine the background contributions
- 2. Enrich the signal sample

 10^{4} **Background validation:** 3J1T, 3J2T ($t\bar{t}$), 2J0T W+jets 10³ MadGraph W+jets shape is corrected with SHERPA

The detector effects are resolved via unfolding

CMS preliminary vs = 8 TeV, L

Muon channel, 2J1T

10⁶

10⁵

signal (t-channel)

s-channel

tW tŦ

DY

w diboson QCD stat. + syst.

W-helicity, single-top topology

- tWb anomalous couplings are reflected in angular decay distribution of $\cos \theta_l^*$
- First measurement of W-helicity in single-top
- A reweighting method employed in a binned likelihood fit using $\cos \theta_l^*$
- Simultaneous measurement of W+jets background
- Signal is every process that includes $t \rightarrow b\ell v$
 - Contributions from $t\overline{t}$ are taken into account
- Results at e- and μ -channels are combined using the likelihoods

W-helicity, single-top topology

NEM

TW-CHANNEL

FOCUS ON NEW RESULTS

 σ_{th} : 22.2 ± 0.6 ± 1.4 pb Kidonakis, arXiv:1210.7813

tW cross section

MET ambiguity: Not possible to fully reconstruct the top quark or W-boson

tW cross section at 8 TeV (12.2 fb⁻¹)

- NEW
- A Likelihood fit is performed on a BDT (13 var.) output over all three channels (μμ, eμ, ee) and all three regions (1j1t, 2j1t, 2j2t)
 CMS, VS = 8 TeV, L=12.2 fb⁻¹, 1j1t
- **Templates** for signal and background taken from **simulation**
- Uncertainties as nuisance parameters in the fit
 - All constrained with data except theory and luminosity
 - Main: modeling of $t\bar{t}$ and scale

Phys. Rev. Lett. 112

Significance: 6.1σ (expected: 5.4 ± 1.4)

Cross section: 23.4 ± 5.4 pb (*th.* : 22.2 ± 0.6 ± 1.4 pb)

 $|\mathbf{V_{tb}}|$: 1.03 ± 0.12(exp.) ± 0.04(th.) ($|V_{tb}| \gg |V_{ts}|, |V_{td}|$)

Constrained $|V_{tb}| < 1$: $|V_{tb}| > 0.78$ @95% C.L.

tW cross section at 8 TeV (20.3 fb⁻¹)

- A Likelihood fit is performed on a BDT (19 var.) output over eµ channel and the two regions (1j1t, 2j≥1t)
- **Templates** for signal and background taken from **simulation**
- Normalization for fake from data
- Uncertainties estimated using pseudoexperiments
 - Main: Wt and $t\bar{t}$ modelling

ATLAS-CONF-2013-100

Significance: 4.2σ (expected: 4.0)

Cross section (tW+X):

 $\begin{array}{l} 27.2 \pm 2.8 \; (\text{stat.}) \pm 5.4 \; (\text{syst.}) \; \text{pb} \\ (th.: 22.2 \pm 0.6 \pm 1.4 \; \text{pb}) \\ \text{With} \; |V_{tb}| \gg |V_{ts}|, |V_{td}| \\ |f_V^L V_{tb}| \colon 1.10 \pm 0.12 (\text{exp.}) \pm 0.03 (\text{th.}) \end{array}$

Constrained $|f_V^L| = 1$: $|V_{tb}| > 0.72$ @95% C.L.

tW cross section at 8 TeV (combination)

- The results of the two experiments are combined using BLUE
- Correlated systematics
 - Theory modeling ($\rho = 1$)
 - Luminosity ($\rho = 0.31$)
 - B-tagging ($\rho = 0.5$)
- Stability checked for different ρ assumptions
- Dominant systematic:
 - Theory modeling
- $|f_V^L \mathbf{V_{tb}}|$: 1.06 ± 0.11
- Constrained $|f_V^L| = 1$ & $|V_{tb}| \le 1$: $|V_{tb}| > 0.79 @95\%$ C.L.

S-CHANNEL

FOCUS ON NEWER RESULTS

s-channel cross section

- SM expectation at 8 TeV: $\sigma_{s-ch} = 5.55 \pm 0.08 \pm 0.21 \text{ pb}$ N. Kidonakis (1205.3453)
- ATLAS: set the first upper limit at 7 TeV $\sigma_{s-ch} < 26.5 (20.5) \text{ pb} (4.6 \text{ pb SM})$

- **Signature:** 1 lepton + 2 b-jets + MET-related quantities
- Backgrounds: tt, W+jets, t-channel

- **Signature:** 1 lepton + 2 b-jets +MET-related quantities
- Backgrounds: tt, W+jets, t-channel
- SM expectation at 8 TeV: $\sigma_{s\text{-}ch} = 5.55 \pm 0.08 \pm 0.21 \text{ pb}$
- A likelihood fit on the BDT output in signal (2J2T) and tt (3J2T) control regions
- Backgrounds (tt, W+jets) are constrained in the fit
- Pseudo experiments for theory and instrumental systematics

Summary on single-top cross sections

Summary

- LHC experiments are performing extensive studies in single-top events
- First property measurements and searches are conducted using t-channel
- Observations of single-top in tW-channel are reported
- Limits are set on the s-channel production
- All measurements so far are consistent with the SM predictions
- No sign of new physics yet
- More measurements and updates with the full LHC datasets are underway
- Stay tuned

<u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u> <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopCONFnotes</u>

Barry wondered if that top quark was single

Π

• LHC experiments proved that

• She is not only single

 She is also pretty attractive as she tells us about the SM physics and beyond

Barry wondered if that top quark was single

BACKUP

Additional information on 1406.7844 (7 TeV)

• Electron:

- $-E_T > 25~GeV$, $|\eta_{cl}| < 2.47$ exclusing , $1.37 < |\eta_{cl}| < 1.52$
- A cut on Σp_T^{calo} in $\Delta R < 0.2$ and a cut on Σp_T^{trk} in $\Delta R < 0.3$ excluding electron constit
- $-\Sigma p_T^{calo}$ is corrected for pile-up
- Thresholds changes wrt η , p_T and number of vertices such that the efficiency for $Z \rightarrow ee$ and $W \rightarrow ev$ is 90%

• Muon:

- p_T > 25 GeV, $|\eta|$ < 2.5
- $\Sigma p_T^{calo} < 4 \ GeV$ in $\Delta R < 0.2$
- $\, \Sigma p_T^{trk} < 2.5 \; GeV$ in $\Delta R < 0.3$
- Isolation efficiency: 95%-97% depending on data-taking period (T&P)

• Jet:

- $-p_T > 30 \; GeV, \; |\eta| < 4.5$
 - For 2.75 < $|\eta|$ < 3.5, p_T > 35 GeV

- Lepton overlap removal, identification criteria

• b-tagging:

- 54% efficiency for b-quark jets, 4.8% for c-quark jets
- $E_T^{miss} > 30 \; GeV, m_T(W) > 30 \; GeV$

Additional information on 1406.7844 (7 TeV)

• Dedicated cat to reject QCD in most of ATLAS analyses:

$$p_T(\ell) > 40 \; GeV\left(1 - \frac{\pi - |\Delta \phi(j_1, \ell)|}{\pi - 1}\right)$$

- Simultaneous fit to NN discriminant in 2 and 3 jets (1b)
- 3jet2tag to constrain the b-tagging efficiency unc.
- QCD from data:
- Electron channel: jet-lepton method, making a sample with jets that are passing electron selections
- Muon channel: matrix method, estimation based on loose-tight isolation of muons
- Wjets: shape taken from simulation. Norm in the same fit as data
- Backgrounds are constrained in the fit
- Signal is generated with PowHeg BOX
- Rt is mostly independent of top mass

	p1 [pb/GeV]	p2 [pb/ GeV2]
$\sigma(tq+\bar{t}q)$	-0.46	-0.06
$\sigma(tq)$	-0.27	-0.04
$\sigma(\bar{t}q)$	-0.19	-0.02

A quadratic m_t dependence is assumed

Additional information on 1406.7844 (7 TeV)

Source	$\Delta\sigma(tq)/\sigma(tq)$ [%]	$\Delta\sigma(tq)/\sigma(tq)$ [%]	$\Delta R_t/R_t$ [%]	$\Delta\sigma(tq+tq)/\sigma(tq+tq)$ [%]
Data statistical	±3.1	±5.4	±6.2	±2.7
Monte Carlo statistical	±1.9	±3.2	±3.6	±1.9
Multijet normalization	± 1.1	±2.0	±1.6	± 1.4
Other background normalization	± 1.1	±2.8	±1.9	±1.6
JES detector	±1.6	± 1.4	< 1	± 1.4
JES statistical	< 1	< 1	< 1	< 1
JES physics modeling	< 1	< 1	< 1	< 1
JES η intercalibration	±6.9	±8.4	± 1.8	±7.3
JES mixed detector and modeling	< 1	< 1	< 1	< 1
JES close-by jets	< 1	< 1	< 1	< 1
JES pile-up	< 1	< 1	< 1	< 1
JES flavor composition	± 1.4	± 1.4	±1.2	±1.6
JES flavor response	< 1	< 1	±1.0	< 1
b-JES	< 1	< 1	< 1	< 1
Jet energy resolution	± 2.1	±1.6	±1.0	±1.9
Jet vertex fraction	< 1	< 1	< 1	< 1
b-tagging efficiency	±3.8	±4.1	< 1	±3.9
c-tagging efficiency	< 1	± 1.4	< 1	< 1
Mistag efficiency	< 1	< 1	< 1	< 1
b/\overline{b} acceptance	± 1.0	< 1	< 1	
$E_{\rm T}^{\rm miss}$ modeling	± 2.3	±3.4	±1.6	±2.6
Lepton uncertainties	±2.8	±3.0	±1.0	±2.8
PDF	±3.2	±5.8	±2.5	±3.2
W+jets shape variation	< 1	< 1	< 1	< 1
tq generator + parton shower	±1.9	± 1.6	< 1	±1.9
tq scale variations	±2.6	±3.0	< 1	±2.6
$t\bar{t}$ generator + parton shower	< 1	± 2.1	±1.6	< 1
tt ISR / FSR	< 1	< 1	±1.0	< 1
Luminosity	± 1.8	± 1.8	±0.5	±1.8
Total systematic	±12.0	±14.9	±6.1	± 12.1
Total	± 12.4	±15.9	±8.7	±12.4

• Generic selection (see backup).

- **JHEP12(2012) 035**
- Different categories number of jets and b-tagged jets

- Backgrounds and systematics as nuisance parameters
- Signal: 2J1T, 3J1T
- Constraining backgrounds, b-tag efficiency, etc.: 4J1T, 2J2T, 3J2T, 4J2T

- Backgrounds and systematics as nuisance parameters
- Signal: 2J1T, 3J1T
- Constraining backgrounds, b-tag efficiency, etc.: 4J1T, 2J2T, 3J2T, 4J2T

- Template fit with datadriven backgrounds
- Signal: 2J1T
- Check the modeling of backgrounds: 3J2T, 2J0T

		Uncertainty source	NN	BDT	$ \eta_{j'} $
		Statistical	-6.1/+5.5%	-4.7/+5.4%	$\pm 8.5\%$
	ert	Limited MC data	-1.7/+2.3%	$\pm 3.1\%$	$\pm 0.9\%$
	JUL	Jet energy scale	-0.3/+1.9%	$\pm 0.6\%$	-3.9/+4.1%
Ē	alı	Jet energy resolution	-0.3/+0.6%	$\pm 0.1\%$	-0.7/+1.2%
ā	ent	b tagging	-2.7/+3.1%	$\pm 1.6\%$	$\pm 3.1\%$
ľ, B	m	Muon trigger + reco.	-2.2/+2.3%	$\pm 1.9\%$	-1.5/+1.7%
Ę	eri	Electron trigger + reco.	-0.6/+0.7%	$\pm 1.2\%$	-0.8/+0.9%
d (J	^A	Hadronic trigger	-1.3/+1.2%	$\pm 1.5\%$	$\pm 3.0\%$
<u>8</u>	-	Pileup	-1.0/+0.9%	$\pm 0.4\%$	-0.3/+0.2%
lal		₽ _T modelling	-0.0/+0.2%	$\pm 0.2\%$	$\pm 0.5\%$
110		W+jets	-2.0/+3.0%	-3.5/+2.5%	$\pm 5.9\%$
ſaı	es	light flavour (u, d, s, g)	-0.2/+0.3%	$\pm 0.4\%$	n/a
4	rat	heavy flavour (b, c)	-1.9/+2.9%	-3.5/+2.5%	n/a
	á	tī	-0.9/+0.8%	$\pm 1.0\%$	$\pm 3.3\%$
	ack	QCD, muon	$\pm 0.8\%$	$\pm 1.7\%$	$\pm 0.9\%$
	B	QCD, electron	$\pm 0.4\%$	$\pm 0.8\%$	-0.4/+0.3%
		s-, tW ch., dibosons, Z+jets	$\pm 0.3\%$	$\pm 0.6\%$	$\pm 0.5\%$
	Tota	al marginalised uncertainty	-7.7/+7.9%	-7.7/+7.8%	n/a
Ŧ		Luminosity		$\pm 2.2\%$	
ž		Scale, tt	-3.3/+1.0%	$\pm 0.9\%$	-4.0/+2.1%
ila	ert	Scale, W+jets	-2.8/+0.3%	-0.0/+3.4%	n/a
gir	ou	Scale, t-, s-, tW channels	-0.4/+1.0%	$\pm 0.2\%$	-2.2/+2.3%
lar	r u	Matching, t t	$\pm 1.3\%$	$\pm 0.4\%$	$\pm 0.4\%$
tn	60)	<i>t</i> -channel generator	$\pm 4.2\%$	$\pm 4.6\%$	$\pm 2.5\%$
Ň	f	PDF	$\pm 1.3\%$	$\pm 1.3\%$	$\pm 2.5\%$
		Total theor. uncertainty	-6.3/+4.8%	-4.9/+5.9%	-5.6/+4.9%
Sys	t. + t	heor. + luminosity uncert.	-8.1/+7.8%	-8.1/+8.4%	$\pm 10.8\%$
Tot	al (sta	at. + syst. + theor. + lum.)	-10.1/+9.5%	-9.4/+10.0%	±13.8%

t-channel cross sections ATLAS Fiducial

• Electron:

- $-E_T > 25~GeV$, $|\eta_{cl}| < 2.47$ exclusing , $1.37 < |\eta_{cl}| < 1.52$
- A cut on Σp_T^{calo} in $\Delta R < 0.2$ and a cut on Σp_T^{trk} in $\Delta R < 0.3$ excluding electron constituents.
- Thresholds changes wrt η , p_T and number of vertices such that the efficiency is uniformed

• Muon:

- $-p_T > 25$ GeV, $|\eta| < 2.5$
- Cone size of isolation depends on muon $p_T \left(\frac{10 \text{ GeV}}{p_T(\mu)}\right)$
- Isolation/ $p_T(\mu) < 0.05$

• Jet:

- $-p_T > 30 \; GeV, \; |\eta| < 4.5$
 - For 2.75 < $|\eta|$ < 3.5, p_T > 35 GeV
- Lepton overlap removal, identification criteria

• b-tagging:

- 50% efficiency for b-quark jets in $t\bar{t}$, 3.7% for c-quark jets and 0.1% for light jets

• $E_T^{miss} > 30 \; GeV, m_T(W) > 50 \; GeV$

Uncertainties in predictions are scale & PDF

t-channel cross sections ATLAS Fiducial

Source	$\Delta \sigma_{\rm fid} / \sigma_{\rm fid}$ [%]		
Data statistics	±1.5		
MC statistics	±1.1		
Multijet normalisation	+2.3 -1.4		1
Other background normalization	±0.8		
JES η intercalibration	±7.9		
JES physics modelling	±3.0		
JES detector	< 0.5		
JES statistical	< 0.5	Object	Cut
JES mixed detector and modelling	< 0.5		
JES single particle	< 0.5	Electrons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.5
JES pile-up	< 0.5	Muons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.5
JES flavor composition	±0.8	Jets	$p_{\rm T} > 30 \text{ GeV} \text{ and } \eta < 4.5$
JES flavor response	±0.5		$p_{\rm T} > 35 {\rm GeV}$ if $2.75 < n < 3.5$
b-JES	< 0.5	Lenton (l) Lets (i)	$\Lambda R(\ell, i) > 0.4$
		Emiss	$E_{\text{miss}} = 20 \text{ GeV}$
Lepton uncertainties	±2.9		$E_{\rm T} > 30 {\rm GeV}$
E_{T}^{miss} modelling	±3.0	Transverse W-boson mass	$m_{\rm T}(W) > 50 {\rm GeV}$
b-tagging efficiency	±3.5	Lepton (ℓ), jet with the highest $p_{\rm T}(j_1)$	$p_{\rm T}(\ell) > 40 {\rm GeV}\left(1 - \frac{\pi - \Delta\phi(j_1, \ell) }{\pi - 1}\right)$
c-tagging efficiency	< 0.5		
Mistag efficiency	< 0.5		
Jet energy resolution	±1.7		
Jet reconstruction eff.	< 0.5		
Jet vertex fraction	< 0.5		
<i>t</i> -channel generator	±7.9		
W+jets generator	±1.4		
PDF	±1.1	Uncertainties in prediction	ons are scale & PDF
$t\bar{t}.Wt$ and s-channel generator	< 0.5	oncertainties in prediction	ons are scale & I DI
ISR / FSR (tt)	< 0.5		
			40
Total Systematic	+14		

t-channel cross sections CMS 8 TeV

			Uncertainty source	$\sigma_{t-ch.}(t)$ (%)	$\sigma_{t-ch.}(\bar{t})$ (%)	$R_{t-ch.}$ (%)	
			Statistical uncertainty	± 2.7	± 4.9	\pm 5.1	
		J	ES, JER, MET, and pileup	\pm 4.2	± 5.2	\pm 1.1	
			b-tagging and mis-tag	± 2.6	\pm 2.6	± 0.2	
		L	epton reconstruction/trig.	± 0.5	± 0.5	± 0.3	
			QCD multijet estimation	± 1.6	± 3.5	± 1.9	
μ and e combined			W+jets, tt estimation	± 1.7	± 3.6	\pm 3.0	
,			Other backgrounds ratio	± 0.1	± 0.2	± 0.6	
			Signal modeling	± 4.9	± 9.4	± 6.1	
			PDF uncertainty	± 2.5	± 4.8	\pm 6.2	
Uncertainty source	a. 1 (%)		Simulation sample size	± 0.6	\pm 1.1	\pm 1.2	
Chatiatian antainte	v _{t-ch.} (70)	Luminosity		± 2.6	± 2.6		
Statistical uncertainty	± 2.7		Total systematic	\pm 8.2	\pm 13.4	± 9.6	
JES, JER, MET, and pileup	± 4.3		Total uncertainty	\pm 8.7	\pm 14.2	± 10.9	
b-tagging and mis-tag	± 2.5	Me	easured cross section or ratio	$53.8\pm4.7\mathrm{pb}$	$27.6\pm3.9\text{pb}$	1.95 ± 0.21	
Lepton reconstruction/trig.	± 0.6			•			
QCD multijet estimation	± 2.3		theorem $(x) = \pi c 4\pi$	+2.1 (1	$\rangle + 1.1$ (D		
W+jets, tt estimation	\pm 2.2		$\sigma_{t-ch.}^{allos}(t) = 56.4$	-0.3 (scale	$(P) \pm 1.1 (P)$	DF)pb,	
Other backgrounds ratio	± 0.3		$-$ theo. $(\bar{I}) = 20.7$	+0.7 (acc	$(1_{2})^{+0.9}$ (D	DE) mb	
Signal modeling	\pm 5.7		$v_{t-ch.}(t) = 50.7$	± 0.7 (sca	$(10)_{-1.1}$ (1)	рг)рр.	
PDF uncertainty	± 1.9						
Simulation sample size ± 0.7			$\sigma_{t,sh}^{\text{theo.}} = 87.2^{+2.8} \text{ (scale)}^{+2.0} \text{ (PDF) pb}.$				
Luminosity	± 2.6		<i>t-</i> cn.	-1.0 (*******	/	- / F ~ /	
Total systematic	\pm 8.9						
Total uncertainty ± 9.3			N. Kidona	akis, 120	5.3453		
Measured cross section	83.6 ± 7.8	pb				41	

t-channel anomalous tWb CMS

Marginalized systematics: JES, JER, b-jet identification, pileup, E_T^{miss} Unmarginalized: The rest, via pseudo-experiments

The most significant: signal modeling

t-channel top polarization CMS

Similar processes in change are combined.			
sinnar processes in snape are combined:	Uncertainty source	δA_l^{μ}	δA_l^e
 tt, s, tW QCD 20% constraint 	generator	0.025	0.009
• WV and V+iots (unconstrained)	Q^2 scale <i>t</i> -channel	0.024	0.055
• vv anu v+jets (unconstraineu)	Q^2 scale, t t	0.015	0.005
	Q^2 scale, W+jets	0.036	0.038
Wiote systematics	top quark mass	0.058	0.042
wjets systematics.	W+jets shape	0.016	0.007
• light of 11%,	W+jets flavour	0.005	0.008
• rowpighting 50%	top p_T , tt	0.010	0.025
· Teweighting 50 /0,	matching, tt	0.028	0.052
• HF 0.5 and 2	matching, W+jets	0.025	0.038
	PDF	0.013	0.014
	JES	0.074	0.074
Constant unfolding bias treated as systematic	JER	0.016	0.179
	unclustered # _T	0.013	0.006
	lepton ID and isolation	0.001	0.002
Combination with BLUE	lepton trigger	0.001	0.002
Only lepton efficiencies uncorrelated	pileup	0.015	0.002
omy repton enterencies uncorrelated	b tagging	0.007	0.009
	mistagging	0.001	0.003
	lepton weight	0.001	0.009
CMS / DOG	anti-isolation range of QCD	0.010	0.053
et Muen	QCD fraction	0.092	0.028
Out	background fractions	0.007	0.018
	unfolding blas	0.002	0.003
	total systematics	0.15	0.23
	statistical	0.07	0.11

0.17

total

tW-channel ATLAS

Source	$\Delta\sigma/\sigma$ [%]		
	observed	expected	
Data statistics	7.1	8.6	
MC statistics	2.8	3.5	
Experimental uncertainties			
Lepton modeling	2.4	2.4	
Jet identification	0.2	0.6	
Jet energy scale	10	12	
<i>b</i> -jet energy scale	5.0	6.3	
Jet energy resolution	0.7	0.2	
$E_{\rm T}^{\rm miss}$ scale	4.1	5.0	
$E_{\rm T}^{\rm miss}$ resolution	4.5	5.3	
Flavor tagging	8.4	9.4	
Theory uncertainties			
Wt/tt overlap modeling	1.4	1.6	
PDF	2.5	3.2	
Background normalization	3.6	4.4	
ISR/FSR	5.9	6.0	
Wt generator and PS	11	11	
$t\bar{t}$ generator and PS	7.5	9.2	
Luminosity	3.7	3.9	
Total (syst)	20	23	

Several uncertainties are constrained with data (profiled):

- Background normalization
- Individual components for jet energy correction
- B-tagging
- Missing transverse energy

tW-channel CMS

Systematic uncertainty	$\Delta \sigma$ (pb)	$\Delta \sigma / \sigma$	Notes
ME/PS matching thresholds	3.3	14%	Matching threshold $2 \times$ and $1/2 \times$ nominal 20 GeV value in tt simulation
Renormalization/factorization scale	2.9	12%	Scale value 2× and 1/2× nominal value of $m_t^2 + \sum p_T^2$ in $t\bar{t}$ and tW simulation
Top-quark mass	2.2	9%	$m_{\rm t}$ varied in tW and tt simulation by $\pm 2 {\rm GeV}$
Fit statistical	1.9	8%	Remaining uncertainty in fit when all other systematic uncertainties are removed
Jet energy scale	0.9	4%	Jet energy scale varied up/down
Luminosity	0.7	3%	2.6% uncertainty in the measured luminosity
Z+jets data/simulation scale factor	0.6	3%	Varying scale factors used for correcting Z +jets E_T^{miss} simulation
tW DR/DS scheme	0.5	2%	Difference between DR and DS scheme used for defining tW signal
tt cross section	0.4	2%	Uncertainty in the cross section of tt production
Lepton identification	0.4	2%	Uncertainty in scale factors for lepton efficiencies between data/simulation
PDF	0.4	2%	From choice of PDF
Jet energy resolution	0.2	1%	Energy resolution for jets varied up/down
b-tagging data/simulation scale factor	0.2	$<\!\!1\%$	Variations in scale factors
tt spin correlations	0.1	$<\!\!1\%$	Difference between tt simulation with/without spin correlations
Pileup	0.1	$<\!\!1\%$	Varying effect of pileup
Top-quark p_T reweighting	0.1	$<\!\!1\%$	Uncertainty due to differences in top quark p_T between data and the simulation
E _T ^{miss} modeling	0.1	$<\!\!1\%$	Uncertainty in amount of unclustered E _T ^{miss}
Lepton energy scale	0.1	$<\!\!1\%$	Uncertainty in energy of leptons
Total	5.5	24%	

tW-channel combination

ATLAS and CMS have similar event yields for signal and background. However, the discriminant distributions in the signal-dominated one-jet region differ. CMS has more expected signal events in the high-discriminant region, and more bins in that region than ATLAS.