Inclusive Top Pair Cross Section Results at the LHC International Workshop on Top-Quark Physics, 2014

Javier Brochero on behalf of the ATLAS and CMS collaborations Talk prepared with the help of Richard Hawkings

Instituto de Física de Cantaria (IFCA)

September 29, 2014

Introduction: New and Precise Measurements

Brochero J. (CMS and ATLAS Collaborations)

Introduction

Top Quark

- Top quark production at the LHC is dominated by the aluon-aluon fusion (\sim 85%).
- Until now, it is the heaviest elementary particle $m_t = 173.4 \, \text{GeV}.$
- Top guark decays into a W and a b almost 100% of the times.
- tt decays: Dilepton(e or μ) (~ 5%), lepton+jets (~ 44%) and fully hadronic ($\sim 46\%$).
- Precise σ_{tr} measurement allows determination of m_t and αs.

\sqrt{s}	$\sigma_{t\bar{t}}(NNLO+NNLL) [pb]$		Scale ¹	PDF ^{1,2}
[TeV]	$(172.5\text{GeV})^1$	(173.3 GeV) ¹	[%]	[%]
7	177.3	172.0	3.4%	5.1%
8	252.8	245.9	3.4%	4.6%
13	824.2	806.4	3.5%	3.5%
14	974.8	953.6	3.6%	3.5%

 $^{1}\sigma_{t\bar{t}}$ calculated using Top++(v2.0).

³ PDF uncertainty calculated following PDF4LHC prescription.

2014
Dilepton
$\nu / \mu/e$
MET
b Jet b.let
$\nu \neq \langle \rangle$
μ/e
Lepton + Jets
$\dot{\nu}^{\nu}$ μ/c
$_{MET}$ μ/e
h.let
b Jet
Jet Jet
Jet Jet
b Jet b Jet
Jet Jet

Introduction ATLAS and CMS Detectors

Brochero J. (CMS and ATLAS Collaborations)

Inclusive tt Cross Section at the LHC

Dilepton Channel: $t\bar{t} \rightarrow e/\mu + \tau_h$

- Background process in searches of charged Higgs boson.
- Measurement performed with the full 8 TeV data sample.
- τ decaying in hadrons.
- Cut and count.
- The fraction of these events is 4/81 of all $\ensuremath{t\bar{t}}$ decays.
- $\bullet \ p_{T}{}^{e} > 35 \, {\rm GeV}, \, p_{T}{}^{\mu} > 30 \, {\rm GeV}.$
- At least 2 jets with $p_T{}^{jet} > 30\,{\rm GeV}$ and one $p_T{}^{jet} > 20\,{\rm GeV}.$
- At least 1-btagged jet using CSV with a b-tagging efficiency \sim 60%.
- τ_h identification: Eff. ~ 50% with ~ 1% misID eff.
- Signal MC: MADGRAPH + PYTHIA

Background

- Main background: Jet misID as τ_h jet. Mainly tt
 t → ℓ+jets and W → ℓν_ℓ+jets.
- O The DD method exploits the probability for each jet to be misidentified as τ_h (ω(p_T, η, R_{jet})).
- ω(p_T, η, *R_{jet}*) is evaluated in W+Jets and QCD control samples.

Dilepton Channel: $t\bar{t} \rightarrow \textbf{e}/\mu + \tau_h$

Source	Uncer. [%]
Experimental	
τ_h jet identification	6.0
τ_h misidentification bkg	4.3
τ_h energy scale	2.5
b-jet tagging, jet misID	1.6
JES, JER, $\not\!$	1.9
lepton reconstruction	0.5
other backgrounds	0.7
luminosity	2.6
Theoretical	
matrix element-parton shower matching	1.5
facto./renor. scale	2.9
generator	1.5
hadronisation	1.7
top-quark p_T modelling	0.6
parton distribution functions	0.7
total systematic uncertainty	9.5

 $\sigma_{t\bar{t}} = 257 \pm 3(\text{stat.}) \pm 24(\text{syst.}) \pm 7(\text{Lumi.}) \text{ pb}$

μe Channel: Simultaneous Measurement tī, WW and Z/ γ^{*}

• tī, W^+W^- and $Z/\gamma^* \to \tau\tau$: dominant processes in the $e\mu$ final states.

- Method to extract the σ_{tt}: Template fit over *μ*_T vs *N_{jets}* parameter space.
- Normalization parameters of $t\bar{t}$, *WW* and Z/γ^* are the free parameters of the fit.
- Background: Matrix method to estimate fake and non-prompt leptons.
- Monte Carlo
 - Central: MC@NLO + HERWIG.
 - **2** PS studies: POWHEG + PYTHIA/HERWIG.
 - ISR/FSR: ALPGEN + PYTHIA.

$\underset{\mbox{\tiny arXiv:1407.0573}}{\mu e}$ Channel: Fiducial $\sigma_{t\bar{t}}$ and Systematic Uncertainties

Fiducial Cross Section

- Allows direct comparisons between theoretical calculations and experimental measurements. Most model-independent measurement.
- The σ^{total}_{tt} is an extrapolation of the fiducial cross section to the full phase space.
- Extraction (fiducial and total σ_{tt}):

$$\sigma_{t\bar{t}}^{\textit{fid}/\textit{total}} = \frac{\textit{N}_{\textit{evt}}}{\mathcal{E} \times \mathcal{A} \times \textit{Br} \times \mathcal{L}} \Rightarrow \sigma_{t\bar{t}}^{\textit{total}} = \frac{\sigma_{t\bar{t}}^{\textit{fid}}}{\mathcal{A} \times \textit{Br}}$$

 Acceptance (A) extrapolates the σ_{tt} to the full kinematic region. Efficiency (E) includes RECO, ID, ISO, Trigger...

$$\mathcal{A} = \frac{N_{GEN}^{Cuts}}{N_{GEN}} \; ; \; \mathcal{E} = \frac{N_{RECO}}{N_{GEN}^{Cut}}$$

Where "Cuts": p_T , η ...

Systematic Uncertainties

Source	tī [%]				
	\mathcal{E}	$\mathcal{A} imes \mathcal{E}^{-}$	Shape		
ISR/FSR+Scale	±1.1	±0.4	+1.0(-1.5)		
Generator	± 0.7	±0.8	+0.2(-0.0)		
PS Modeling	± 0.9	± 0.6	+0.0(-0.1)		
PDF	±0.6	±1.7	± 0.5		
e reco., ID, ISO	±3.2		+0.0(-0.1)		
μ reco	± 0.8		+0.0(-0.0)		
JES	±0.8		+1.4(-1.4)		
JER	±0.2		+0.3(-0.0)		
background		± 0.8	В		

Beam Energy Uncertainty

- Beam energy at 8 TeV was calibrated to be $0.30\pm0.66\%$ smaller than the nominal value.
- Propagated to σ_{tt̄} ⇒~ 1.7% of uncertainty.

<u>µe Channel: Results</u>

μe Channel: Measurement Using Events with b-tagged Jets

Method

Simultaneous measurement of σ_{tī} and ε_b.

$$\begin{split} N_1 &= \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} 2\epsilon_b (1 - C_b\epsilon_b) + N_1^{bkg} \\ N_2 &= \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu} C_b\epsilon_b^2 + N_2^{bkg} \end{split}$$

- ϵ_b is the product of b-tagging efficiency and jet kinematic acceptance for tt events.
- $\epsilon_{\mathrm{e}\mu}$ is the leptonic acceptance.
- C_b is a correlation coefficient of ϵ_b : $C_b = \epsilon_{bb} / \epsilon_b^2 \sim 1.$
- Leptonic acceptance ε_{eµ} and tagging correlation C_b evaluated from tτ̄ simulation.
- Simultaneous measurement (σ_{tt} and ε_b) reduces related systematic uncertainties.

μe Channel: Measurement Using Events with b-tagged Jets

Selection

- An electron and a muon with opposite charge.
- Event selection:

$$p_T^e > 25 \text{ GeV}$$

2
$$p_T^{\mu} > 25 \text{ GeV}$$

3 $p_T^{Jet} > 25 \text{ GeV}$

- Single lepton triggers.
- b-tagging: Multivariate algorithm with 70% of efficiency.
- Central tī MC: POWHEG + PYTHIA. tī modeling: MC@NLO + HERWIG and ALPGEN + HERWIG.

Background

- Drell-Yan: Estimated by the Data/MC ratios of $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$.
- Non-prompt leptons: Extrapolated from the SS data region using OS/SS simulated ratios.

 $\textit{R}_{t\bar{t}} = 1.326 \pm 0.024 (\text{stat.}) \pm 0.015 (\text{syst.}) \pm 0.049 (\mathcal{L}) \pm 0.001 (\text{beam})$

Γ	al (C-M)	Luli	Fiducial cross section (including $W \rightarrow \tau \rightarrow \ell \nu$)			
	$\rho_{\rm T}({\rm Gev})$	$ \eta^* $	$\sqrt{s} = 7 \text{TeV}(\text{pb})$	$\sqrt{s} = 8 \text{ TeV}(\text{pb})$		
Γ	> 25	< 2.5	$2.615 \pm 0.044 \pm 0.056 \pm 0.052 \pm 0.047$	$3.448 \pm 0.025 \pm 0.069 \pm 0.107 \pm 0.059$		
	> 30	< 2.4	$2.029 \pm 0.034 \pm 0.043 \pm 0.040 \pm 0.036$	$2.662 \pm 0.019 \pm 0.054 \pm 0.083 \pm 0.046$		

Uncertainty	$\Delta \sigma_{t\bar{t}}^{total} / \sigma_{t\bar{t}}^{total}$ (%)		
\sqrt{s}	7 TeV	"8 TeV	
Parton distribution functions	1.04	1.13	
QCD scale choice	0.30	0.30	
Analysis systematics ($\sigma_{t\bar{t}}$)	2.27	2.26	
Uncertainty	$\Delta \sigma_{t\bar{t}}^{fid}$ /	$\sigma_{t\bar{t}}^{fid}$ (%)	
Parton distribution functions	0.38	0.28	
QCD scale choice	0.00	0.00	
Analysis systematics ($\sigma_{t\bar{t}}$)	2.13	2.01	

- Includes beam energy uncertainty.
- Most precise measurement (3.9% @ 7 TeV and 4.3% @ 8 TeV).
- $R_{t\bar{t}}^{Theory}(7/8 \, {\rm TeV}) =$ 1.430 ± 0.013(PDF + α_s) + ±0.001(scale)
- Simultaneous fit reduces jets, b-tagging and modelling of radiation uncertainties.

•
$$\frac{d\sigma_{t\bar{t}}}{dm_t} = -0.28\%$$
 per GeV.

Dilepton Channel: CMS Detector JHEP 02 (2014) 024

- Measurement performed in $\mu\mu$, ee and μe .
- Just 5 3 fb⁻¹ of data!
- Cut and count analysis.
- Monte Carlo:
 - Central: MADGRAPH + PYTHIA.
 - Hadronization: POWHEG + PYTHIA/HEBWIG
 - PS (cross check): MADGRAPH/POWHEG + PYTHIA
- b-tagging eff.: CSV, 85% misID 10%.
- Mass parametrization.

Background

- Drell-Yan: MC normalization based in the N_{z}^{data} events inside m_{z} window.
- Non-W/Z: "tight to loose" method.
- VV and single top: MC Simulations.
- Brochero J. (CMS and ATLAS Collaborations)

- $\rho N^{Jets} > 2$ and $N^{b-jets} > 1$
- **3** $\mu\mu$ and *ee* only: $\not\!\!E_T > 40 \,\text{GeV}$ and m_Z veto to reduce DY background.

Systematic Uncertainties and Results

Systematic Uncertainties

Source	e^+e^-	$\mu^+\mu^-$	$\mu^{\pm} e^{\mp}$
Source		[pb]	
Trigger efficiencies	4.1	3.0	3.6
Lepton efficiencies	5.8	5.6	4.0
Lepton energy scale	0.6	0.3	0.2
Jet energy scale	10.3	10.8	5.2
Jet energy resolution	3.2	4.0	3.0
b-jet tagging	1.9	1.9	1.7
Pileup	1.7	1.5	2.0
Scale (μ_F and μ_B)	5.7	5.5	5.6
Matching PS	3.9	3.8	3.8
Single top quark	2.6	2.4	2.3
VV	0.7	0.7	0.5
Drell-Yan	10.8	10.3	1.5
Non-W/Z leptons	0.9	3.2	1.9
Total systematic	18.6	18.6	11.4

$$\frac{\sigma_{t\bar{t}}(m_t)}{\sigma_{t\bar{t}}(m_t^o)} = 1.00 - 0.009 \times (m_t - m_t^o) - 0.000168 \times (m_t - m_t^o)^2$$

$\sigma_{t\bar{t}}$ in the $\mathcal{B}(t \to Wb) / \mathcal{B}(t \to Wq)$ measurement PLB 736 (2014) 33

- Full 8 TeV data sample.
- Analysis focused in the measurement of $\mathcal{B}(t \rightarrow Wb) / \mathcal{B}(t \rightarrow Wq)$
- Measurement performed over the three dilepton channels
- Profile likelihood method.
- Background: Drell-Yan estimated from data with Template fit to the angle between the leptons (in ee, $\mu\mu$) and the $\sum M_T$ for e μ channel.
- O Uncertainties affect signal and background expectations as multiplicative factors (nuisances).
 - All uncertainties are distributed according to a log-normal and log-uniform distribution.
- The systematic uncertainty includes PDF, luminosity, tī modeling, etc.

 $\sigma_{t\bar{t}} = 238 \pm 1(\text{stat.}) \pm 15(\text{syst.}) \text{ pb}$

Dilepton Combination: ATLAS + CMS Result CMS PAS TOP-14-016/ATLAS-CONE-2014-054

	ATLAS	CMS	Corr.	LHC comb.
Detector model				
Trigger	0.4	3.6	0	1.1
LES/LER	1.2	0.2	0	0.9
Lepton ID	1.7	4.0	0	1.7
Jet resolution	1.3	3.0	0	1.2
Jet ID	0.1	-	-	0.1
b-tagging	1.0	1.7	0	0.8
Pileup	_	2.0	-	0.6
non-JES subtotal	2.7	6.7	0	2.7
UncorrJES	0.6	4.3	0	1.3
InsituJES	0.6	0.6	0	0.5
IntercalibJES	0.3	0.1	0.5	0.2
FlavourJES	0.9	2.9	0	1.0
bJES	0.1	n/e	-	0.1
JES subtotal	1.3	5.2	0	1.7
Signal model				
Scale	0.7	5.6	0.5	1.9
Radiation	_	3.8	-	1.1
GEN and PS	3.0	3.4	0.5	2.7
PDF	2.7	0.5	1	2.1
DD-Background				
Z+jets	<0.1	1.5	0	0.4
Lepton misID	0.8	1.9	0	0.8
SIM Background				
Dibosons	0.3	0.5	1	0.4
Single top	2.0	2.3	1	2.1
Luminosity				
VdM scan	2.9	5.0	1	3.5
Luminosity	6.9	3.6	0	5.1
Total systematic	9.3	13.4		8.4
Total	9.5	13.6		8.5

Comb. performed with the BLUE method.

Brochero J. (CMS and ATLAS Collaborations)

Inclusive tt Cross Section at the LHC

September 29, 2014 16/18

Brochero J. (CMS and ATLAS Collaborations)

Inclusive tt Cross Section at the LHC

September 29, 2014 16 / 18

Conclusions

- **1** tt cross section measurements and theory have unprecedented precision.
 - $\sigma_{t\bar{t}}^{Theory} = 245.9 \, \text{pb} \pm 5.7\%$
 - $\sigma_{t\bar{t}}^{\mu e} = 241.8 \, \text{pb} \pm 3.5\%$
- omega $\sigma_{t\bar{t}}$ in fiducial regions is provided in order to avoid model-dependent extrapolations.
 - No NNLO calculation to compare.
- Precise measurements of the \(\sigma_{tt}\) allows to perform measurements of other interesting parameters such as \(m_t, SUSY \) constrains, etc.
- O New results at 8 TeV are coming (lepton+jets, full hadronic, dilepton, etc).

Brochero J. (CMS and ATLAS Collaborations)

Latest CMS and ATLAS results

- ATLAS Simultaneous measurements of the top quark pair, W^+W^- , and $Z/\gamma^* \rightarrow \tau\tau$ production cross sections in pp collisions with the ATLAS detector at $\sqrt{s} = 7 \text{ TeV}$. arXiv:1407.0573
- **2** CMS Measurement of the tibar production cross section in pp collisions at 8 TeV in the $e\tau$ and $\mu\tau$ dilepton final states. arXiv:1407.6643
- ATLAS Measurement of the tt production cross-section using $e\mu$ events with b-tagged jets in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector. arXiv:1406.5375
- CMS Measurement of the ratio B($t \rightarrow Wb$)/B($t \rightarrow Wq$) in pp collisions at $\sqrt{s} = 8$ TeV. PLB 736 (2014)
- **(3)** CMS Measurement of the tT production cross section in the dilepton channel in pp collisions at $\sqrt{s} = 8$ TeV. JHEP 02 (2014) 024
- O ATLAS Measurement of the tf production cross section in the τ+jets channel using the ATLAS detector. Eur. Phys. J. C, 73 3 (2013)
- **?** CMS Measurement of the tF production cross section in the τ + *jets* channel in pp collisions at \sqrt{s} = 7 TeV. EPJ C73 (2013) 2386

Backup

μe Channel: Systematic Uncertainties

\sqrt{s}		7 TeV			8 TeV	
Uncertainty (inclusive $\sigma_{t\bar{t}}$)	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta C_b / C_b$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta C_b / C_b$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$
	(%)	(%)	(%)	(%)	(%)	(%)
tī modelling	0.71	-0.72	1.43	0.65	-0.57	1.22
Parton distribution functions	1.03	-	1.04	1.12	-	1.13
QCD scale choice	0.30	-	0.30	0.30	-	0.30
Single-top modelling	-	-	0.34	-	-	0.42
Single-top/tt interference	-	-	0.22	-	-	0.15
Single-top Wt cross-section	-	-	0.72	-	-	0.69
Diboson modelling	-	-	0.12	-	-	0.13
Diboson cross-sections	-	-	0.03	-	-	0.03
Z+jets extrapolation	-	-	0.05	-	-	0.02
Electron energy scale/resolution	0.19	-0.00	0.22	0.46	0.02	0.51
Electron identification	0.12	0.00	0.13	0.36	0.00	0.41
Muon momentum scale/resolution	0.12	0.00	0.14	0.01	0.01	0.02
Muon identification	0.27	0.00	0.30	0.38	0.00	0.42
Lepton isolation	0.74	-	0.74	0.37	-	0.37
Lepton trigger	0.15	-0.02	0.19	0.15	0.00	0.16
Jet energy scale	0.22	0.06	0.27	0.47	0.07	0.52
Jet energy resolution	-0.16	0.08	0.30	-0.36	0.05	0.51
Jet reconstruction/vertex fraction	0.00	0.00	0.06	0.01	0.01	0.03
b-tagging	-	0.18	0.41	-	0.14	0.40
Misidentified leptons	-	-	0.41	-	-	0.34
Analysis systematics ($\sigma_{t\bar{t}}$)	1.56	0.75	2.27	1.66	0.59	2.26