The Top Mass: Interpretation and Theoretical Uncertainties

André H. Hoang

University of Vienna

CERN Theory Seminar, May 21, 2014

Motivation

Motivation

CMS Preliminary CMS 2010, dilepton 175.5 ± 4.6 ± 4.6 GeV JHEP 07 (2011) 049, 36 pb⁻¹ (value ± stat ± syst) CMS 2010, lepton+jets 173.1 ± 2.1 ± 2.6 GeV PAS TOP-10-009, 36 pb⁻¹ (value ± stat ± syst) CMS 2011, dilepton 172.5 ± 0.4 ± 1.4 GeV EPJC 72 (2012) 2202, 5.0 fb⁻¹ (value ± stat ± syst) CMS 2011, lepton+jets 173.5 ± 0.4 ± 1.0 GeV JHEP 12 (2012) 105, 5.0 fb⁻¹ (value ± stat ± syst) CMS 2011, all-hadronic 173.5 ± 0.7 ± 1.2 GeV arXiv:1307.4617, 3.5 fb⁻¹ (value ± stat ± syst) CMS 2012, lepton+jets 172.0 ± 0.2 ± 0.8 GeV PAS TOP-14-001, 19.7 fb⁻¹ (value ± stat ± syst) **CMS** combination $172.2 \pm 0.1 \pm 0.7 \text{ GeV}$ (value ± stat ± syst) March 2014 **Tevatron combination** $173.2 \pm 0.6 \pm 0.8 \text{ GeV}$ Phys. Rev. D86 (2012) 092003 (value ± stat ± syst) World combination 2014 $173.3 \pm 0.3 \pm 0.7 \text{ GeV}$ ATLAS, CDF, CMS, D0 (value ± stat ± syst) 165 170 175 180 m, [GeV]

N

Outline

<u>**Part 1:**</u> \rightarrow Theoretical considerations on m_t^{MC}

 \rightarrow "What is the physics MC mass ?" \leftarrow

• How $m_t^{
m MC}$ is related to field theoretic masses.

- **<u>Part 2:</u>** \rightarrow Method to determine m_t^{MC}
 - Variable Flavor Number Scheme for final state jets.
 Full massive event shape distribution
 - First encouraging preliminary results

QCD Parameters

QCD Lagrangian:
$$\mathcal{L}_{QCD} = \mathcal{L}_{classic} + \mathcal{L}_{gauge-fix} + \mathcal{L}_{ghost}$$

$$\mathcal{L}_{\text{classic}} = -\frac{1}{4} F^A_{\alpha\beta} F^{\alpha\beta}_A + \sum_{\text{flavors } q} \bar{q}_\alpha (i D - m_q)_{\alpha\beta} q_b$$
$$D^\mu = \partial^\mu + i g T^C A^{\mu C}$$

Formally $m_{\rm top}$ and α_s are couplings of the Lagrangian.

$$\begin{array}{ll} m^0_{\mathrm{top}} \,, \ \alpha^0_s & \to \mathrm{bare} \ \mathrm{UV}\mathrm{-divergent} \\ & \to \mathrm{field} \ \mathrm{theoretically} \ \mathrm{unique} \\ & \to \mathrm{pure} \ \mathrm{UV}\mathrm{-object} - \mathrm{NO} \ \mathrm{IR} \ \mathrm{dependence} \end{array}$$

$$m^R_{\mathrm{top}} \,, \ \alpha^R_s & \to \mathrm{renormalized} \ \mathrm{UV}\mathrm{-finite} \end{array}$$

- \rightarrow renormalization scheme dependent
- \rightarrow regularization scheme dependent

Strong Coupling

Heavy Quark Mass

$$+ \underbrace{\leq} \underbrace{\sum}_{\Sigma} \underbrace{\leq} = p - m^{0} - \Sigma(p, m^{0}, \mu)$$
$$\Sigma(m^{0}, m^{0}, \mu) = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots \right] + \underbrace{\sum}_{n} \underbrace{(m^{0}, m^{0}, \mu)}_{n}$$
$$\underbrace{MS \text{ scheme:}}_{MS \text{ scheme:}} m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right]$$
$$\stackrel{\text{. Very energetic processes (E>m)}_{n} \underbrace{Total cross sections}_{n} \underbrace{Off-shell massive quarks}_{n} \underbrace{Off-shell massive quarks}$$

→ Separation: self energy corrections ↔ inter quark/gluon interactions for all momenta

ions

→ Has perturbative instabilities due to sensitivity to momenta < 1 GeV (Λ_{QCD})

Heavy Quark Mass

$$+ \underbrace{\sum \sum \sum }_{\substack{m \in \mathbb{Z}^{n} \\ \sum (m^{0}, m^{0}, \mu) = m^{0} - \sum(p, m^{0}, \mu)}_{\sum(m^{0}, m^{0}, \mu) = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots\right] + \underbrace{\sum \min(m^{0}, m^{0}, \mu)}_{\sum(m^{0}, m^{0}, \mu) = m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots\right]}$$

$$\frac{\text{MS scheme:}}{\text{m}^{0} = m^{\text{pole}} \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots\right] - \sum \min(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

$$\frac{\text{MSR scheme:}}{m^{\text{MSR}}(R) = m^{\text{pole}} - \sum \min(R, R, \mu)}$$

$$\text{Jain, AH, Scimemi, Stewart (2008)}$$

 \rightarrow Interpolates between MS and pole mass scheme

$$m_t^{\mathrm{MSR}}(R=0) = m^{\mathrm{pole}}$$

$$m_t^{\text{MSR}}(R = \overline{m}(\overline{m})) = \overline{m}(\overline{m})$$

- \rightarrow Stable in perturbation theory.

Masses Loop-Theorists Like to use

- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Monte-Carlo QCD Computer:

- Computes all inter-quark/gluon
 and radiation processes
- Computes hadronization of partons
- Electroweak radiation effects
- Does NOT calculate self-energy processes
- Value of MC mass parameter is intrinsically related to the interquark/gluon radiation contained in the MC

MC top mass does NOT depend on the observable since the MC calculates always the same way !

MC top mass is unique for each MC.

- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Monte-Carlo QCD Calculator:

- Computes all inter-quark/gluon and radiation processes
- Computes hadronization of partons
- Electroweak radiation effects
- Does NOT calculate self-energy processes

Inter-quark/gluon radiation/ Parton shower cut-off at $\Lambda_s=1~{
m GeV}$

Hadronization model below.

Shower, shower cut, model details affect the value of top mass.

Lessons on the MC top mass (for a perfect MC)

The interpretation (and value) of the top mass parameter in each MC generator is unique and should be observable-independent.

The value measured for the top mass depends on details of the MC, so in principle different MC have different top mass values.

The MC top mass parameter has features similar to a Top meson mass, and the way how to extract a field theoretical mass (in a suitable scheme) is analogous to methods in B physics

Without further knowledge there is an uncertainty of order $\lesssim 1 GeV$ one has to add when translating the MC top mass to a suitable suitable field theoretical top mass ($m_t^{MSR}(R=1-3 GeV)$)

MSR Mass Definition

Theory Tools to Measure the MC mass

<u>Part 2</u>

The relation between MC mass and field theoretical mass can be made more precise by measuring the MC mass using a hadron level QCD prediction of a mass-dependent observable.

Need:

- Accurate analytic QCD predictions beyond LL/LO with full control over the quark mass dependence
- Theoretical description at the hadron level for comparison with MC at the hadron level
- Implementation of massive quarks into the SCET framework
- VFNS for final state jets (with massive quarks)*

```
* In collaboration with: P. Pietrulewicz, V. Mateu, I. Jemos, S. Gritschacher
arXiv:1302.4743 (PRD 88, 034021 (2013))
arXiv:1309.6251 (PRD 89, 014035 (2013))
arXiv:1405.4860 (PRD ..)
More to come ...
```


Theory Tools to Measure the MC mass

Observable: Thust in e+e-

$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$
$$\tau \stackrel{\tau \to 0}{\approx} \frac{M_1^2 + M_2^2}{Q^2}$$

Invariant mass distribution in the resonance region !

Factorization for Massless Quarks

VFN Scheme for Final State Jets

- \rightarrow consider: dijet in e⁺e⁻ annihilation, n_l light quarks \oplus one massive quark
- \rightarrow obvious: (n₁+1)-evolution for $\mu \gtrsim m$ and (n₁)-evolution for $\mu \leq m$
- \rightarrow obvious: different EFT scenarios w.r. to mass vs. Q J S scales

 $\mu_H \sim Q$ Q $\mu_J \sim Q \sqrt{\tau}$ $n_l + 1$ m $\mu_S \sim Q \tau$ n_l $Q\Lambda_{QCD}$ τ Λ_{QCD} 0.1 0.3 0.0 0.2 0.4 05

"profile functions"

- \rightarrow Deal with collinear and soft "mass modes"
- ightarrow Additional power counting parameter $\lambda_m = m/Q$

mode	${\pmb ho}^\mu = (+,-,\perp)$	p ²
<i>n</i> -coll MM	$Q(\lambda_m^2, 1, \lambda_m)$	m^2
soft MM	$Q(\lambda_m, \lambda_m, \lambda_m)$	m^2

Aims:

- Full mass dependence (little room for any strong hierarchies): decoupling, massless limit
- Smooth connections between different EFTs
- Determination of flavor matching for current-, jet- and soft-evolution
- Reconcile problem of SCET₂-type rapidity divergences

CERN Theory Seminar, May 21, 2014

arks \oplus one massive quark evolution for $\mu \le m$ is vs. Q – J – S scales

Fully Massive Thrust

universität wien

Counting Rules

NLL NNLL NNNLL $\ln \frac{d\sigma}{dy} = (\alpha_s \ln)^k \ln + (\alpha_s \ln)^k + \alpha_s (\alpha_s \ln)^k + \alpha_s^2 (\alpha_s \ln)^k + \dots$

						Classic Counting
standard		cusp	non-cusp	$\operatorname{matching}$	alphas	
counting	LL	1	_	tree	1	LLA
	\mathbf{NLL}	2	1	tree	2	NLLA
	NNLL	3	2	1	3	NNLLA + LLO
	$ m N^3LL$	4^{pade}	3	(2)	4	NNNLLA + NLO
	-LL'	1	_	tree	1	LLA
primed	NLL'	2	1	1	2	NLLA + LLO
counting	NNLL'	3	2	2	3	NNLLA + NLO
emphasizes fixed order	$N^{3}LL'$	4^{pade}	3	3	4	NNNLLA + NNLC

Theory error from Padé estimate of Γ_3^{cusp}

VFNS for Inclusive Hadron Collisions

 $Q^2 = -q^2$

e.g. Deep Inelastic Scattering:

$$\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$$

- \rightarrow consider all quarks as as light (m_q < Λ)
- \rightarrow quark number operators with an anomalous dimension between proton states $\rightarrow\,$ DGLAP equations
- \rightarrow Hadronic tensor:

$$W_{\mu\nu}(Q,x) \sim \sum_{\text{partons a}} f_a(\mu) \otimes w_{\mu\nu}(Q,x,\mu)$$

 \rightarrow µ-dependence with DGLAP equations for (light) parton distribution functions

$$\frac{\partial}{\partial \ln Q^2} \begin{pmatrix} q_i(x, Q^2) \\ g(x, Q^2) \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \sum_j \int_x^1 \frac{d\xi}{\xi} \\
\times \begin{pmatrix} P_{q_i q_j} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) & P_{q_i g} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) \\
P_{g q_j} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) & P_{g g} \left(\frac{x}{\xi}, \alpha_s(Q^2)\right) \end{pmatrix} \begin{pmatrix} q_j(\xi, Q^2) \\ g(\xi, Q^2) \end{pmatrix},$$
(11)

$$\frac{d\alpha_s(Q)}{d\ln Q^2} = -\beta_0 \,\frac{\alpha_s^2(Q)}{(4\pi)} + \dots \qquad \beta_0 = 11 - \frac{2}{3}n_{\text{light}}$$

Q

Λ

m_{light}

VFNS for Inclusive Hadron Collisions

 $\frac{d\sigma(e^-p \to e^- + X)}{dQ \, dx}$

- e.g. Deep Inelastic Scattering:
 - → realistic case: massive quarks with Q > m > Λ (charm, bottom [top])
 - \rightarrow Hadronic tensor:

$$W_{\mu\nu}(m,Q,x) \sim \sum_{a=q,g,Q} f_a^{(n_l+1)}(\mu) \otimes w_{\mu\nu}(m,Q,x,\mu) \overset{\checkmark}{\underset{P}{\longrightarrow}}$$

VFNS for pdf evolution:

- DGLAP evolution for n_1 flavors for $\mu \leq m$ (only light quarks)
- DGLAP evolution for n_i +1 flavors for $\mu \ge m$ (light quarks + massive quark)
- Flavor matching for α_s and the pdfs at $\mu_m \sim m$

$$f_{q,g,Q}^{(n_l+1)}(\mu_m) = \sum_{a=q,g} F_{q,g,Q|a}(m,\mu_m) \otimes f_a^{(n_l)}(\mu_m)$$

- \rightarrow hard coefficient $w_{\mu\nu}(m,Q,x)$ approaches massless $w_{\mu\nu}(Q,x)$ for $m{\rightarrow}0$
- \rightarrow calculations of w_{µv}(m,Q,x) involves subtraction of pdf IR mass singularities
- \rightarrow full dependence on m/Q without any large logarithms

Q

m

Λ

m_{light}

VFN Scheme: Secondary Massive Quarks

 $\bigotimes_{p'}^{p} m \bigotimes_{p'}^{p} m$

- Provided results for factors with complete mass dependence at O(as^2) [NNNLL/NNLL']
- Flavor threshold correction factors at O(as^2)
- Reconcile problem of SCET₂-type rapidity divergences
- Establish consistency conditions of flavor threshold matching factors (e.g. universality between thrust and DIS@ large x
- Simple implementation rules related to modified renormalization conditions
- Removal of O(Λ_{QCD}) renormalon effects concerning mass and soft effects

VFN Scheme: Secondary Massive Quarks

Rapidity Logarithms

$$L_M = \ln\left(\frac{m^2}{\mu_m^2}\right)$$

VFN Scheme: Primary Massive Quarks

MC vs. SCET: Primary Bottom Production

Preliminary !!

Denahdi, AHH, Mateu

Compare MC with SCET (pQCD, summation, hadronization effects) @ NNLL for Thrust

- Take central values for α_s and Ω_1 from our earlier NNLL thrust analysis for data on all-flavor production (=massless quarks) $\alpha_s(M_Z) = 0.1192 \pm 0.006$ $\Omega_1 = 0.276 \pm 0.155$
- Compare with Pythia (m_b^{Pythia}=4.8 GeV) for consistency and mass sensitivity
- Which mass does m_b^{Pythia}=4.8 GeV correspond to for a field theoretic bottom mass?

order	$\overline{\Omega}_1 \ (\overline{\mathrm{MS}})$	Ω_1 (R-gap)	order	$lpha_s(m_Z)~({ m with}~ar\Omega_1^{\overline{ m MS}})$	$lpha_s(m_Z) \; (ext{with} \; \Omega_1^{ ext{Rgap}})$
\mathbf{NLL}'	0.264 ± 0.213	0.293 ± 0.203	NLL'	0.1203 ± 0.0079	0.1191 ± 0.0089
NNLL	0.256 ± 0.197	0.276 ± 0.155	NNLL	0.1222 ± 0.0097	0.1192 ± 0.0060
NNLL'	0.283 ± 0.097	0.316 ± 0.072	NNLL'	0.1161 ± 0.0038	0.1143 ± 0.0022
$N^{3}LL$	0.274 ± 0.098	0.313 ± 0.071	$N^{3}LL$	0.1165 ± 0.0046	0.1143 ± 0.0022
$N^{3}LL'$ (full)	0.252 ± 0.069	0.323 ± 0.045	$N^{3}LL'$ (full)	0.1146 ± 0.0021	0.1135 ± 0.0009
$\mathrm{N}^{3}\mathrm{LL'}_{(\mathrm{QCD}+m_{b})}$	0.238 ± 0.070	0.310 ± 0.049	$\mathrm{N}^{3}\mathrm{LL'}_{(\mathrm{QCD}+m_b)}$	0.1153 ± 0.0022	0.1141 ± 0.0009
$\rm N^3 L L'_{(pure QCD)}$	0.254 ± 0.070	0.332 ± 0.045	$ m N^3LL'_{(pure QCD)}$	0.1152 ± 0.0021	0.1140 ± 0.0008

Abbate, Fickinger, AHH, Mateu, Stewart 2010

MC vs. SCET: Primary Bottom Production

CERN Theory Seminar, May 21, 2014

MC vs. SCET: Primary Bottom Production

Preliminary !! (No fit yet)

 $\overline{m}_b(\overline{m}_b) = 3.7, 4.2, 4.7 \text{ GeV}$ $\alpha_s(M_Z) = 0.1192$ $\Omega_1 = 0.276 \text{ GeV}$

Conclusions

- → The MC top mass parameter has the status of a hadronic parameter and is therefore not a field theoretic mass definition
- → The issue is becomes relevant when uncertainties in the MC top mass are becoming smaller than 1 GeV.
- → Ignoring the issue means that there is a conceptual uncertainty of about 1 GeV one needs to account for when relating the MC mass to a field theory mass.
- \rightarrow Suitable field theory mass definition in this context: e.g. MSR mass (R=1-3 GeV)
- → It is possible to relate the MS top mass to a field theoretic mass by fits of QCD calculations at the hadron level to MC output for very mass sensitive quantities.
- → When one does that there are still theoretical uncertainties (in the QCD predictions used for the fit) one has to account for.
- \rightarrow Fully massive thrust using a VFNS for final state inclusive jets.
- \rightarrow Upcoming:
- C parameter, heavy jet mass, inv. mass distr. @ NNLL
- NNNLL for e+e- \rightarrow Need: 2-loop massiv quark jet function
- DIS for massive quarks @ large x
- pp \rightarrow tt+X (2-jettiness) @ NLL \rightarrow NNLL possible, NNNLL need NNLO full. Diff.

