Tevatron Combinations and World Top Quark Mass Combination

Reinhild Yvonne Peters

The University of Manchester, also at DESY

HELMHOLTZ

European Research Council Established by the European Commission

on behalf of the Tevatron and LHC experiments

Top Studies

Top Combinations

Single Top: Cross Sections

Single top quark production via electroweak interaction

Collider	s-channel: σ_{tb}	t-channel: σ_{tqb}	Wt-channel: σ_{tw}
Tevatron: pp̄ (1.96 TeV)	1.04 pb	2.26 pb	0.28 pb
LHC: pp (7 TeV)	4.6 pb	64.6 pb	15.7 pb

- Wt-channel: negligible at the Tevatron
- s-channel: challenging at the LHC

Single Top: Analysis

Main background to single top: W+jets → very challenging

Modeled using Alpgen+Pythia/ Herwig

Normalized to Data

- Select I+jets & ∉_T+jets signature
 - High p_{T} lepton (I+jets) & high \not{E}_{T}
 - 2 jets (CDF) or 2&3 jets (D0)
 - 1 or 2 b-jets
 - \mathbf{E}_{τ} +jets: increase acceptance
 - Not-reconstructed electrons/muons from W
 - Events with hadronically decaying tau-lepton from W

Single Top: Combination

- Build multivariate discriminants, optimized to separate s-channel signal from backgrounds
- Extract combined cross section using Bayesian statistical analysis
 - Systematic uncertainties: categorized in classes; correlation taken into account

Systematic uncertainty	CDI	<u>-</u>	D0	Corre-	
	Norm	Dist	Norm	Dist	lated
Lumi from detector	4.5%		4.5%		No
Lumi from cross section	4.0%		4.0%		Yes
Signal modeling	2 - 10%	•	3–8%		Yes
Background (simulation)	2 - 12%	•	2 - 11%	•	Yes
Background (data)	1540%	•	19-50%	•	No
Detector modeling	2 - 10%	•	1–5%	•	No
<i>b</i> -jet-tagging	1030%		5 - 40%	•	No
JES	0 - 20%	•	0 - 40%	•	No

Single Top: s-channel Combination

Central result: maximum of posterior

Phys. Rev. Lett. 112, 231803 (2014)

P-value: $1.8 \times 10^{-10} \rightarrow 6.3$. S.D. observed significance

First observation of s-channel single top production!

Single Top: s+t and t-channel Combinations

- Same combination method (& input analyses): also used for s+t-channel and t-channel combinations
 - Discriminants trained on s-channel or t-channel
 → both discriminants used simultaneously
- Construction of 2D posterior probability density
 - Function of $\sigma_{\rm s}$ and $\sigma_{\rm t}$

 Combined σ_{s+t}: measured by forming 2D posterior for σ_{s+t} versus σ_t → integrate out σ_t

Single Top: s+t and t-channel Combinations

 Table of individual channels and combinations:

01.10.2014

Single Top: $|V_{tb}|^2$

- Extraction of V_{tb}: use same discriminants as for s- and t-channel cross sections
 - Bayesian posterior probability density formed for $|V_{th}|^2$
 - Assumption: flat prior in $|V_{tb}|^2$
 - No assumption on ratio $\sigma_{\rm s}/\sigma_{\rm t}$

tt Cross Section: Analysis

- At Tevatron: 85% qq annihilation + 15% gg fusion
- $t\bar{t}_{\rightarrow}W^+bW^-\bar{b}$: Final states are classified according to W decay
 - Combination of tt
 cross section from CDF and D0 in dilepton and I+jets final states
 - 4 analyses from CDF, 2 from D0

tt Cross Section: CDF input

Constructed mutually exclusive

- 4 CDF measurements:
 - 2 l+jets
 - 1 dliepton
 - 1 allhadronic
 - **Dilepton: counting** events with >=1 b-tagged jets
- I+jets:
 - Analysis 1: Construct NN discriminant based on kinematic variables
 - No b-tagging
 - Analysis 2: counting events with >=1 b-tagged jets
- Allhadronic: fit to reconstructed top quark mass in events with ==1 and >1 b-tagged jets (in events containing 6-8 jets)

Intermezzo: BLUE Method

- BLUE Method (Best Linear Unbiased Estimator)
 - Use weighted mean of all measurements y_i:

$$\hat{\theta} = \sum_{i} w_{i} y_{i}$$

The weights are set to minimize uncertainty:

$$w_i = \frac{\sum_{j} V_{ij}^{-1}}{\sum_{k} \sum_{l} V_{kl}^{-1}}$$

with V: covariance matrix (of all uncertainties: statistical and all systematics)

- Error squared on the weighted mean: $Var(\hat{\theta}) = \vec{w}^T V \vec{w}$
- For high correlations: some weights can get negative

TRANCHESTER tt Cross Section: CDF input cont.

- CDF analyses are first combined to one CDF cross section
 - Using BLUE
 - Systematic uncertainty on t̄t selection efficiency directly proportional to measured $\sigma_{t\bar{t}} \rightarrow three$ iterations of BLUE combination to remove this bias

Correlation	LJ-ANN	LJ-SVX	DIL	HAD
LJ-ANN	1	0.50	0.25	0.34
LJ-SVX		1	0.44	0.47
DIL			1	0.51
HAD				1

CDF combination:

 $\sigma_{t\bar{t}} = 7.63 \pm 0.31(stat) \pm 0.36(syst) \pm 0.15(lumi) \text{ pb}$

tt Cross Section: D0 input

- 2 D0 measurements
 - 1 dilepton
 - 1 l+jets
- Dilepton: likelihood fit to discriminant based on NN b-jet identification algorithm (using smallest NN output value from 2 highest-pT jets)
- I+jets: events with 3 & >3 jets, split into 0, 1 or >1 b-tagged jets
 - In background dominated samples: use random forest discriminant
 - Likelihood fit to all subsamples simultaneously
- Combination with likelihood fit, systematics treated as nuisance parameters
- D0 combination: $\sigma_{t\bar{t}} = 7.56 \pm 0.20(stat) \pm 0.32(syst) \pm 0.46(lumi) pb$

tt Cross Section: Tevatron Combination

- BLUE combination of CDF and D0 input combinations
 - Split systematics into classes according to correlation

	CDF	D0		Tevatron
Central value of $\sigma_{\bar{t}t}$	7.63	7.56		7.60
Sources of systematic uncertainty			Correlation	
Modeling of the detector	0.17	0.22	NO	0.13
Modeling of signal	0.21	0.13	YES	0.18
Modeling of jets	0.21	0.11	NO	0.13
Method of extracting $\sigma_{t\bar{t}}$	0.01	0.07	NO	0.03
Background modeled from theory	0.10	0.08	YES	0.10
Background based on data	0.08	0.06	NO	0.05
Normalization of Z/γ^* prediction	0.13	_	NO	0.08
Luminosity: inelastic $p\bar{p}$ cross section	0.05	0.30	YES	0.15
Luminosity: detector	0.06	0.35	NO	0.14
Total systematic uncertainty	0.39	0.56		0.36
Statistical uncertainty	0.31	0.20		0.20
Total uncertainty	0.50	0.59		0.41

tt Cross Section: Tevatron Combination

- Correlation between measurements from CDF and D0: 17%
- CDF measurement: weight 60%;
 D0: 40%

Phys.Rev. D 89, 072001 (2014)

Top Quark Mass: Analyses

- Top quark mass: important free parameter in SM
- Tevatron combination uses
 - 5 Run I measurements
 - 5 published Run II measurements and 2 preliminary CDF results
- Update since march 2013:
 - CDF analyses in dilepton and alljets
 - D0 I+jets measurement using matrix elements

Proton q q q y t W v Pr Lepton Antiproton q t V v p_T b Jet

- Combination: using **BLUE**
 - Systematics split into classes according to source and correlations
 - Main challenge!

Matrix of total correlation coefficients:

		Ru	ın I publish	ned		Run II published					Run II prel.	
	CDF		DØ	DØ		CDF		DØ		CDF		
	ℓ +jets	ll	all-jets	ℓ +jets	ll	ℓ +jets	L_{XY}	MEt	ℓ +jets	ll	ll	all-jets
CDF-I ℓ +jets	1.00	0.29	0.32	0.26	0.11	0.49	0.07	0.26	0.19	0.12	0.54	0.27
CDF-I <i>ll</i>	0.29	1.00	0.19	0.15	0.08	0.29	0.04	0.16	0.12	0.08	0.32	0.17
CDF-I all-jets	0.32	0.19	1.00	0.14	0.07	0.30	0.04	0.16	0.08	0.06	0.37	0.18
DØ-I ℓ+jets	0.26	0.15	0.14	1.00	0.16	0.22	0.05	0.12	0.13	0.07	0.26	0.14
DØ-I ℓℓ	0.11	0.08	0.07	0.16	1.00	0.11	0.02	0.07	0.07	0.05	0.13	0.07
CDF-II ℓ +jets	0.49	0.29	0.30	0.22	0.11	1.00	0.08	0.32	0.28	0.18	0.52	0.30
CDF-II L_{XY}	0.07	0.04	0.04	0.05	0.02	0.08	1.00	0.04	0.05	0.03	0.06	0.04
CDF-II MEt	0.26	0.16	0.16	0.12	0.07	0.32	0.04	1.00	0.17	0.11	0.29	0.18
DØ-II ℓ+jets	0.19	0.12	0.08	0.13	0.07	0.28	0.05	0.17	1.00	0.36	0.15	0.14
DØ-II ℓℓ	0.12	0.08	0.06	0.07	0.05	0.18	0.03	0.11	0.36	1.00	0.10	0.09
CDF-II <i>ll</i>	0.54	0.32	0.37	0.26	0.13	0.52	0.06	0.29	0.15	0.10	1.00	0.32
CDF-II all-jets	0.27	0.17	0.18	0.14	0.07	0.30	0.04	0.18	0.14	0.09	0.32	1.00

Uncertainties on		Tevatron combined values (GeV/c^2)
combined top	$M_{ m t}$	174.34
quark mass:	In situ light-jet calibration (iJES)	0.31
quarteriacor	Response to $b/q/g$ jets (aJES)	0.10
	Model for b jets (bJES)	0.10
	Out-of-cone correction (cJES)	0.02
	Light-jet response (1) (rJES)	0.05
	Light-jet response (2) (dJES)	0.13
	Lepton modeling (LepPt)	0.07
	Signal modeling (Signal)	0.34
	Jet modeling (DetMod)	0.03
	b-tag modeling (b -tag)	0.07
	Background from theory (BGMC)	0.04
	Background based on data (BGData)	0.08
	Calibration method (Method)	0.07
	Offset (UN/MI)	0.00
	Multiple interactions model (MHI)	0.06
	Systematic uncertainty (syst)	0.52
	Statistical uncertainty (stat)	0.37
	Total uncertainty	0.64

CDF-I dilepton

DØ-I dilepton

CDF-II dilepton *

Mass of the Top Quark

(* preliminary)

 $167.40 \pm 11.41 (\pm 10.30 \pm 4.90)$

168.40 ±12.82 (±12.30 ± 3.60)

170.80 +3.25 (±1.83 ± 2.69)

July 2014

- New Tevatron top mass combination
 - Results using up to 9.7fb^{-1}

 $m_t = 174.34 \pm 0.37 (\text{stat}) \pm 0.52 (\text{syst}) \text{ GeV}$

Yvonne Peters

200

- March 2014: First world combination of top quark mass
- Inputs: best measurement per channel per experiment (as of March 2014!)
 - 6 input measurements from Tevatron (Run II)
 - 5 input measurements from LHC (7 TeV data sample)
 - All input measurements are "classical" top mass measurements:
 - CDF: template methods; dilepton: neutrino weighting
 - D0: ME method in I+jets, neutrino weighting in dilepton
 - JES calibration transferred from I+jets to dilepton
 - ATLAS: 3D template method in I+jets, m_{ib} observable in dilepton
 - CMS: ideogram method; dilepton analytic matrix-weighting
- Combination performed using BLUE

- Main challenge: systematic uncertainties!
 - Correlation between measurements and experiments?
 - In contrast to Tevatron-only: also between colliders
 - (Partially) different treatment at different experiments
 - Different MC programs for central mass measurement: MadGraph at CMS, Alpgen at D0, Pythia at CDF, Powheg at ATLAS
- Solution:
 - 1. classify systematic in "logical" classes with the same correlation
 - Get central result
 - 2. vary the correlations to check the influence on the result!

		ρ_{1}	EXP		<i>Q</i> LUC	OTEV	ρο	OL
	$\rho_{\rm CDF}$	$\rho_{\rm D0}$	$\rho_{\rm ATL}$	$\rho_{\rm CMS}$	/ LIIC	FILV	$\rho_{\text{ATL-TEV}}$	$\rho_{\text{CMS-TEV}}$
Stat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
iJES	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
stdJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
flavourJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
bJES	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5
MC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Rad	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5
CR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
PDF	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5
DetMod	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
<i>b</i> -tag	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
LepPt	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
BGMC [†]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
BGData	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Meth	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MHI	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0

			ρ_{1}	EXP		QUUC	OTEV	ρο	OL	
Step 2		$\rho_{\rm CDF}$	$ ho_{\rm D0}$	$\rho_{\rm ATL}$	$\rho_{\rm CMS}$	FLIC	FIEV	$\rho_{\text{ATL-TEV}}$	$\rho_{\text{CMS-TEV}}$	
(examples)	Stat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Change:	iJES	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1
0 0 5	stdJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
$0 \rightarrow 0.5$	flavourJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	bJES	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5	
	MC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1
	Rad	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
	CR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	PDF	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
	DetMod	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	1
	<i>b</i> -tag	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	LepPt	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	BGMC[†]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	BGData	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Meth	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	MHI	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	

			$ ho_{\mathrm{EXP}}$			<i>Q</i> LUC	OTEV	ρο	OL	
Step 2		$ ho_{\rm CDF}$	$ ho_{ m D0}$	$\rho_{\rm ATL}$	$\rho_{\rm CMS}$	FLIC	F IEV	$\rho_{\text{ATL-TEV}}$	$\rho_{\text{CMS-TEV}}$	
(examples)	Stat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Change:	iJES	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	
	stdJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
$0 \rightarrow 0.5$	flavourJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	bJES	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5	
Change:	MC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
1 → 0.5	Rad	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
	CR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	PDF	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
	DetMod	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	<i>b</i> -tag	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	LepPt	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	BGMC [†]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	BGData	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Meth	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	MHI	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	

			$ ho_{\mathrm{EXP}}$			QUIC	OTEV	ρο	OL	
Step 2		$\rho_{\rm CDF}$	$ ho_{ m D0}$	$\rho_{\rm ATL}$	$\rho_{\rm CMS}$	FLIC	FILV	$\rho_{\text{ATL-TEV}}$	$\rho_{\text{CMS-TEV}}$	
(examples)	Stat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Change:	iJES	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	
0 0 5	stdJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
$0 \rightarrow 0.3$	flavourJES	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	bJES	1.0	1.0	1.0	1.0	0.5	1.0	1.0	0.5	
Change:	MC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
1 → 0.5	Rad	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
	CR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	PDF	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	
Change:	DetMod	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
$0 \rightarrow 0.5$	<i>b</i> -tag	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	LepPt	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	BGMC[†]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	BGData	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Meth	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	MHI	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	

- Step 2: variations to check stability
- Global factor:
- Change correlation factor ⁻⁵⁰ -100 of individual systematics: -150

 Small size of effects → no additional uncertainty assigned for the choice of correlation factors

- Step 2: variations to check stability
- **Global factor:**
- Change correlation factor -100 of individual systematics:

Small size of effects → no additional uncertainty assigned for the choice of correlation factors

50

Combined result:

Uncertainty of 0.76 GeV → including newest results from Tevatron and LHC should be reduced even further!

 compatibility between input results will need careful consideration arXiv:1403.4427

W Helicity in Top Quark Decays

 Left-handed coupling of W-boson to fermions: Not every combination of spin for W and b-quark is allowed

Measure angle 0^{*} between down-type decay product (lepton, d-, s-quark) of W and top quark in W rest frame

- Input measurements combined with BLUE:
 - 1 CDF I+jets using matrix element method
 - Same method as for mass, but replace m_{T} with $f_{0} \& f_{+}$
 - I CDF dilepton analysis and D0 I+jets and dilepton analysis using a template method: fitting fraction of cos0* templates to data
- Tevatron Combination:
 - Model independent

 (fit f₊, f₋, f₀ with f₊+f₀+f₊=1):
 f₀=0.722±0.062(stat)±0.052(syst)
 f₊=-0.033±0.034(stat)±0.031(syst)
- Good agreement with SM values
- First published Tevatron top combination!

- Legacies of the Tevatron are being written
 - s-channel observation from CDF+D0 combination
 - New combinations of top quark mass!

- Work on more combinations ongoing
 - Tevatron, LHC and world combinations!
 - \rightarrow stay tuned!

BACKUP

The Tevatron

>10fb⁻¹ on disk per experiment

Tevatron ended operation on 30.9.2011

tt Final States

tt W^+bW^-b : Final states are classified according to W decay

B(t W⁺b)=100%

Top Pair Branching Fractions

pure hadronic: ≥6 jets (2 b-jets)

dilepton: 2 isolated leptons; High missing E_T from neutrinos; 2 b-jets $\int_{t^{+T}} \int_{t^{-1}}^{t^{+T}} \int_{t^{-1}}^{t^{+T}}$

≥4 jets (2 b-jets)

Reminder of some Basics: Production and Final States

- Most properties measured in tt events
- At Tevatron: 85% qq̄ annihilation + 15% gg fusion
 - At LHC (7 TeV): 15% qq annihilation + 85% gg fusion
- tt W⁺bW⁻b : Final states are classified according to W decay
 - Most properties measured in dilepton & I+jets final states

Top Pair Branching Fractions

01.10.2014

proton

antiproton

Top Quark Mass: Uncertainties

I+jets: Systematic uncertainties

Source of uncertainty	Effect on m_t (GeV)
Signal and background modeling:	· · · · ·
Higher order corrections	+0.15
Initial/final state radiation	± 0.09
Hadronization and UE	+0.26
Color reconnection	+0.10
Multiple $p\bar{p}$ interactions	-0.06
Heavy flavor scale factor	± 0.06
<i>b</i> -jet modeling	+0.09
PDF uncertainty	± 0.11
Detector modeling:	
Residual jet energy scale	± 0.21
Flavor-dependent response to jets	± 0.16
b tagging	± 0.10
Trigger	± 0.01
Lepton momentum scale	± 0.01
Jet energy resolution	± 0.07
Jet ID efficiency	-0.01
Method:	
Modeling of multijet events	+0.04
Signal fraction	± 0.08
MC calibration	± 0.07
Total systematic uncertainty	± 0.49
Total statistical uncertainty	± 0.58
Total uncertainty	± 0.76

Yvonne Peters

Jet Energy Scale

01.10.2014

Top Quark Mass World Combination: Inputs

Input measurements for world combination

Experiment	$t\bar{t}$ final state	\mathcal{L}_{int} [fb ⁻¹]	$m_{top} \pm (stat.) \pm (syst.)$ [GeV]	Total uncertainty on m_{top} [GeV] ([%])	Reference
	<i>l</i> +jets	8.7	$172.85 \pm 0.52 \pm 0.99$	1.12 (0.65)	[8]
CDF	dilepton	5.6	$170.28 \pm 1.95 \pm 3.13$	3.69 (2.17)	[9]
CDI	all jets	5.8	$172.47 \pm 1.43 \pm 1.41$	2.01 (1.16)	[10]
	$E_{\rm T}^{\rm miss}$ +jets	8.7	$173.93 \pm 1.26 \pm 1.36$	1.85 (1.07)	[11]
D0	<i>l</i> +jets	3.6	$174.94 \pm 0.83 \pm 1.25$	1.50 (0.86)	[12]
20	dilepton	5.3	$174.00 \pm 2.36 \pm 1.49$	2.79 (1.60)	[13]
ATLAS	<i>l</i> +jets	4.7	$172.31 \pm 0.23 \pm 1.53$	1.55 (0.90)	[14]
THE IS	dilepton	4.7	$173.09 \pm 0.64 \pm 1.50$	1.63 (0.94)	[15]
	<i>l</i> +jets	4.9	$173.49 \pm 0.27 \pm 1.03$	1.06 (0.61)	[16]
CMS	dilepton	4.9	$172.50 \pm 0.43 \pm 1.46$	1.52 (0.88)	[17]
	all jets	3.5	$173.49 \pm 0.69 \pm 1.23$	1.41 (0.81)	[18]

Table 2: Overview of the 11 input measurements used in this m_{top} combination.

Top Quark Mass World Combination: Naming Convention

Naming convention of systematic uncertainties

WA	LHC comb [7]	TEV comb. [6] ([39])	
Stat	Statistics	Statistics	(Statistical uncertainty)
iJES	iJES	iJES	(in situ light-jet calibration)
stdJES	uncorrJES⊕insituγ/ZJES⊕intercalibJES	dJES⊕cJES⊕rJES	(Light-jet response 1⊕2)⊕Out-of-cone correction
flavourJES	flavourJES	aJES	(Response to $b/q/g$ jets)
bJES	bJES	bJES	(Model for <i>b</i> jets)
MC	MC⊕UE	part of Signal	(part of Signal modelling)
Rad	Rad	part of Signal	(part of Signal modelling)
CR	CR	part of Signal	(part of Signal modelling)
PDF	PDF	part of Signal	(part of Signal modelling)
DetMod	DetMod	DetMod	(Jet modelling)
<i>b</i> -tag	<i>b</i> -tagging	part of BGData	(part of background based on data)
LepPt	Lepton reconstruction	LepPt	(Lepton modelling)
BGMC	Background from MC	BGMC	(Background from theory)
BGData	Background from Data	BGData	(Background based on data)
Meth	Method	Method	(Calibration Method)
MHI	Multiple Hadronic Interactions	MHI	(Multiple interaction model)