

September 29 - October 3 2014

Cannes, France

Review of recent top-quark LHC combinations on behalf of the ATLAS and CMS Collaborations within the TOPLHCWG

> G. Cortiana, MPP Munich (in consultation with M. Senghi, CIEMAT Madrid)

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The TOPLHCWG

- Formed in 2011, the <u>TOPLHCWG</u> constitutes a forum for:
 - the study of the experimental and theoretical systematics in the measurements of top quark properties
 - the definition of measurements and tools (MC generators, theory calculations...)
 - the combination of the results of the experiments and their presentation for a proper theoretical interpretation

The TOPLHCWG

- Formed in 2011, the <u>TOPLHCWG</u> constitutes a forum for:
 - the study of the experimental and theoretical systematics in the measurements of top quark properties
 - the definition of measurements and tools (MC generators, theory calculations...)
 - the combination of the results of the experiments and their presentation for a proper theoretical interpretation

It is structured

- in several working-groups: cross section (single / pair top quark prod.), mass, W polarization, charge asymmetry, differential distributions
- and task forces for dedicated discussions (Jet/MET, *b*-tagging, common acceptance/pseudo-top definition, QCD radiation and MC generators, common theoretical x-sec references...)

Combination assumptions/tools/inputs

Assumptions:

- Individual measurements are unbiased (checked at the experiment level)
- Uncertainties are Gaussian distributed
- All sources of uncertainty are independent

Combination assumptions/tools/inputs

Assumptions:

- Individual measurements are unbiased (checked at the experiment level)
- Uncertainties are Gaussian distributed
- All sources of uncertainty are independent
- Tools:
 - Best Linear Unbiased Estimate <u>NIM A500 (2003) 391-405</u>, <u>NIM A270 (1988) 110</u>
 - Combined results obtained from a linear weighted sum of the input measurements
 - Weights are determined to minimize the total uncertainty of the combined result, taking into account statistical and systematic uncertainties as well as their correlations
 - Variants using relative uncertainties (iterative BLUE) are used mainly for x-sec measurements. *—» more info in backup slides*

Combination assumptions/tools/inputs

Assumptions:

- Individual measurements are unbiased (checked at the experiment level)
- Uncertainties are Gaussian distributed
- All sources of uncertainty are independent
- Tools:
 - Best Linear Unbiased Estimate <u>NIM A500 (2003) 391-405</u>, <u>NIM A270 (1988) 110</u>
 - Combined results obtained from a linear weighted sum of the input measurements
 - Weights are determined to minimize the total uncertainty of the combined result, taking into account statistical and systematic uncertainties as well as their correlations
 - Variants using relative uncertainties (iterative BLUE) are used mainly for x-sec measurements. *—» more info in backup slides*
- Inputs:
 - (prel./published) individual results with a detailed breakdown of uncertainties
 - Correlations among corresponding sources of uncertainty (the core of any combination effort). Correlation coefficients between input measurements are set based on scientific assessments, and the effect of their variation is used to test the stability of the result

- Theory uncertainties:
 - Signal simulation
 - Event modelling and environment

- Experimental uncertainties
 - Physics objects and detector modelling
 - identification, reconstruction, and calibration
 - Energy scales
 - (in particular for jets)

- Theory uncertainties:
 - Signal simulation
 - Event modelling and environment
- Background contamination
- Experimental uncertainties
 - Physics objects and detector modelling
 - identification, reconstruction, and calibration
 - Energy scales
 - (in particular for jets)

Theory uncertainties:

- Signal simulation
- Event modelling and environment
- Background contamination

Experimental uncertainties

- Physics objects and detector modelling
 - identification, reconstruction, and calibration
- Energy scales
 - (in particular for jets)

Combination tasks:

Finding a mapping between corresponding systematics in different experiments

 understanding (and testing) the correlations
 in each category

Theory and signal modelling uncertainties comprise systematics stemming from the modelling of

- **QCD** radiation in top quark events (ISR/FSR, μ_R/μ_F scale, ME-PS matching)
- Hadronization / Parton Shower (Pythia vs. Herwig)
- Non perturbative effects (Underlying Event, Colour Reconnection)
- and from the choice of the proton PDF, and of the Monte Carlo generator

-» see also M. Seidel's talk

Theory and signal modelling uncertainties comprise systematics stemming from the modelling of

- **QCD** radiation in top quark events (ISR/FSR, μ_R/μ_F scale, ME-PS matching)
- Hadronization / Parton Shower (Pythia vs. Herwig)
- Non perturbative effects (Underlying Event, Colour Reconnection)
- and from the choice of the proton PDF, and of the Monte Carlo generator

-» see also M. Seidel's talk

- Typically they are assumed to be 100% correlated, although:
 - different MC generators are used as baseline (LO multi-leg vs. NLO)
 - radiation systematics are assessed in different ways (scale variations vs. Pythia radiation parameters tuning)
 - some contributions are under discussion between ATLAS and CMS:
 - e.g. (the level of) double counting of the hadronization uncertainty and the corresponding components included in the JES uncertainties (but also in the *b*-tagging calibrations).

- Jet Energy Scale (JES) uncertainties are typically among the dominant systematics.
 - The various JES sub-components are carefully mapped across experiments and their correlation (range) stems from detailed discussions within the Jet/ MET liaison group including experts/analysers from both collaborations

uncertainty categories and respective components.	Table 4:	Range of correlation	coefficients to b	be used when	combining	measurements	between	the ATLAS	and CMS	experiment,	for eac	h of the
	uncertair	ity categories and respe	ective component	ts.								

Description	Component names, CMS	Component name, ATLAS	Correlation range	
1a. Statistical	RelativeStatEC2; RelativeStatHF; Abso- luteStat	Statistical components for <i>in situ</i> calibration	Uncorrelated	Deta
1b. Detector	AbsoluteScale; RelativeJEREC1; Rela- tiveJEREC2; RelativeJERHF	Electron/photon energy scale, γ -jet jet energy resolution, Multijet balance components, Closure of the calibra- tion	Uncorrelated	
2. Modelling uncertainties	AbsoluteMPFBias	γ -jet and Z-jet: radiation suppression, out-of-cone and MC generator differ- ence; γ -jet photon purity; Z-jet ex- trapolation; η -intercalibration mod- eling	0-50%	+ > 0
3. Modelling uncertainties for rela- tive correction	RelativeFSR	η -intercalibration modeling	50-100%	50
4. Uncertainties related to jet par- tonic flavor	Flavor; AbsoluteFlavorMapping	Flavor composition and response	0-100% Va	aryir
5. <i>b</i> -jet uncertainties	Flavor	<i>b</i> -jet response	50-100%	50
6. Pile-up correction	PileUpDataMC; PileUpPtBB; PileUp- Bias; PileUpOOT; PileUpJetRate; Pile- UpPtEC; PileUpPtHF	Pile-up calibration; effects of pile-up on <i>in situ</i> methods	Uncorrelated	
7. High- <i>p</i> ^T uncertainties	HighPtExtra; SinglePion	High-p _T	Uncorrelated]
8. Close-by jet uncertainties		Close-by	Uncorrelated	

12

b-tagging:

- the two collaborations use different approaches regarding *b*-jet identification (algorithms, *b*-tagging efficiency working points...)
- the different approaches have been compared within a dedicated liaison group, and a list of common sources of uncertainty has been identified (see also twiki).

Category of Systematic Uncertainty	Correlation between experiments
General physics modelling (ISR/FSR, parton showering, <i>b</i> -frag.)	100%
Specific physics modelling (p _T spectrum for soft muons, light/ charm ratio, <i>b/c</i> production)	100%
Detector description (JES, pileup, etc.)	0%
Method specific	0%
	for correlated sources.

for correlated sources, breakdowns into several subcomponents will be provided and will need to be propagated at the analysis level

b-tagging:

- the two collaborations use different approaches regarding *b*-jet identification (algorithms, *b*-tagging efficiency working points...)
- the different approaches have been compared within a dedicated liaison group, and a list of common sources of uncertainty has been identified (see also twiki)

Category of Systematic Uncertainty	Correlation between experiments	Correlation with physics analyses
General physics modelling (ISR/FSR, parton showering, <i>b</i> -frag.)	100%	100%
Specific physics modelling (p _T spectrum for soft muons, light/ charm ratio, <i>b/c</i> production)	100%	0%
Detector description (JES, pileup, etc.)	0%	100%
Method specific	0%	0%
	for correlated sources, breakdowns into several sub-	Arise from <i>b</i> -tagging calibrations exploiting top

components will be provided and will need to be propagated at the analysis level

14

Detector modelling (uncorrelated):

- trigger
- Iepton identification/reconstruction and energy scales
- E_T^{miss}/ jet resolution
- pile-up effects
- (JES/b-tagging when sub-dominant)

Background:

- Fully correlated
- Uncorrelated

Luminosity:

- Fully correlated:
- Uncorrelated:

- if estimated from MC (*e.g.* W+jets differential distributions, single top quark / top quark pair norm.) if estimated from data (*e.g.* fake leptons, W/Z+jets normalization using data driven techniques)
- Van der Meer scan analysis
- experiment specific luminosity measurements (beam condition, long term stabil. and luminometer calib.)

Top quark production cross sections

Top quark pair x-sec. comb. @ 7 TeV

TOP-2014

 $\sigma(t\bar{t} \mid 7 \text{ TeV}) = 173.3 \pm 2.3(\text{stat}) \pm 7.6(\text{syst}) \pm 6.3(\text{lumi}) \text{ pb}$

- More / newer / updated single measurements are available @ 7 TeV.
- Combination cycles do not keep the pace of the experiments yet:
 - discussions / agreement / harmonization of systematic uncertainties / multi-experiment reviews take time!
- Awaiting final Run-I measurements to perform a new combination...

G. Cortiana 17

(5.8%)

Top quark pair x-sec @ 8 TeV

Among available measurements, the most precise are from the eµ channel.

σ
S
9
9
ш
,
0
Ň
(D)
l a
v
L È L
50

	ATLAS	CMS	Correlation	LHC combina	ation
Cross section (pb)	242.4	239.0		241.5	
Uncertainty (pb)					
Statistical	1.7	2.6	0	1.4	
Detector model					
Trigger	0.4	3.6	0	1.0	
Lepton scale and resolution	1.2	0.2	0	0.9	
Lepton identification	1.7	4.0	0	1.6	
Jet resolution	1.2	3.0	0	1.2	
Jet identification	0.1	_	_	0.1	
b-tagging	1.0	1.7	0	0.8	
Pileup	_	2.0	-	0.5	
Non-JES subtotal	2.6	6.7	0	2.6	
UncorrJES	0.6	4.3	0	1.2	«—
InsituJES	0.6	0.6	0	0.5	Using the
IntercalibJES	0.3	0.1	0.5	0.2	recommended
FlavourJES	0.9	2.9	1	1.4	JES
bJES	0.1	_	_	0.1	categories
JES subtotal	1.3	5.2	0.4	1.9	
Class subtotal	2.9	8.5		3.2	
Signal model					
Scale	0.7	5.6	0.5	1.9	
Radiation	_	3.8	_	1.0	
Generator and parton shower	3.0	3.3	0.5	2.7	
PDF	2.7	0.5	1	2.1	
Class subtotal	4.1	7.5	0.3	4.0	
Background from data					
Z+jets	< 0.1	1.5	0	0.4	
Lepton misidentification	0.8	1.9	0	0.8	
Class subtotal	0.8	2.4	0	0.9	
Background from simulation					
Dibosons	0.3	0.5	1	0.4	
Single top quark	2.0	2.3	1	2.1	
Class subtotal	2.0	2.4	1	2.1	
Luminosity					
Beam modelling	2.9	5.0	1	3.5	
Luminosity determination	6.9	3.6	0	5.1	
Class subtotal	7.5	6.2	0.3	6.2	
Total systematic	9.3	13.4		8.4	
Total	9.4	13.6		8.5	18

Top quark pair x-sec @ 8 TeV

(3.5%)

Among available measurements, the most precise are from the eµ channel.

	ATLAS	CMS	Correlation	LHC combination	
Cross section (pb)	242.4	239.0		241.5	
Uncertainty (pb)					
Statistical	1.7	2.6	0	1.4	
Detector model					
Trigger	0.4	3.6	0	1.0	
Lepton scale and re	1.2	0.2	0	0.9	
Lepton identificat ⁱ	1.7	4.0	0	1.6	
Jet resolution	lit.	3.0	0	1.2	
Jet identificatio ^{, Ch} an-	y ta	74	_	0.1	
b-tagging as 7/9	in .	sis a	0	0.8	
Pileup 43. Wou	'Y Co		6 h.	0.5	
Non-JES su' COrp	a	"re/~	, Perfo	2.6	
UncorrJES	" the	p'q	$(lon)^{\prime}$	may «-	
InsituJES Uncontraction		tra.	J. 1 9.90	ind and	the
Intercal ^j Ch	"Un	ر م	ilion 30	Um .	ndeo
Flavou , And	tia	Urra	Of Of	Ption	
bJES Up 90	JUS. 7	λ	ater !	SUIS	ies
	+ DL '	'10 n		<u>ጉ</u> •	
	NO (י <u>א</u> אי	ax "	η_{n}	
Si to Clefar S	Uh_{a}	"lan,	~ 000	Situ -	
s. " the "ault the	~Cat		J_{n}	STVAN	
Radiation 10 months	⁹ ລ≁⊾ ``	^s gor		CQ	
Generator and P.	, sime	b_{1}	195 r		
PDF	ms ~	'' ^I Cc	1011	\sim	
Class subtotal	Serv.	⇒⊀:	rres "	<i>Υ</i> η —	
Background from data		AVIVA	⁻ ^{op} Or)~	
Z+jets	< 0.1	1.	SCAP '	'U S .4	
Lepton misidentification	0.8	1.9	^{-cn} ar	<i>io</i> , <i>J.8</i>	
Class subtotal	0.8	2.4	0	$\overline{0.9}$	
Background from simulation				-	
Dibosons	0.3	0.5	1	0.4	
Single top quark	2.0	2.3	1	2.1	
Class subtotal	2.0	2.4	1	2.1	
Luminosity					
Beam modelling	2.9	5.0	1	3.5	
Luminosity determination	6.9	3.6	0	5.1	
Class subtotal	7.5	6.2	0.3	6.2	
Total systematic	9.3	13.4		8.4	
Total	9.4	13.6		8.5	10_
					- 19

Single top t-chan. x-sec. comb. (8 TeV)

Source

rule of thumb:

TOP-2014

t-chan

s-chan

Statistics 4.1 Luminosity 3.4 Simulation and modelling 7.7 Jets 4.5 Backgrounds 3.2 5.5 Detector modelling Total systematics (excl. lumi) 11.0 Total systematics (incl. lumi) 11.5 12.2 Total uncertainty

Harmonization efforts in progress for a coherent treatment of t-channel generator uncertainties.

Updated meas. available and awaiting combination:

Uncertainty (pb)

ATLAS: ATLAS-CONF-2014-007 $\sigma(t-ch) = 82.6 \pm 12.1 \text{ pb}$ CMS: arxiv:1403.7366

Single top tW-chan. x-sec comb. 8 TeV

- Evidence/Observation of associated tW production reported by ATLAS (20.3 fb⁻¹) and CMS (12.2 fb⁻¹) in the dilepton channel using BDT analyses (+ profiling of syst.):
 - ATLAS: 4.2σ obs (4.0σ exp.)
 - CMS: 6.1σ obs (5.4σ exp.)

Source	Uncert	ainty
Source	(%)	(pb)
Data statistics	5.5%	1.4
Simulation statistics	1.8%	0.5
Luminosity	2.7%	0.7
Theory modeling	15.8%	4.0
Background normalization	2.3%	0.6
Jets	5.3%	1.3
Detector modeling	4.9%	1.2
Total systematics (excl. lumi)	17.5%	4.4
Total systematics (incl. lumi)	17.7%	4.4
Total uncertainty	18.6%	4.7

Sept. 2014

	Category	ATLAS	CMS		ρ		
	Data statistics	Data statistics	7.1%	Fit statistics	8.1%	0.0	
	Category subtotal	7.1%			8.1%	0.0	CMS
	Simulation statistics	Sim. statistics	2.8%	Sim. statistics	2.4%	0.0	notes:
el	Category subtotal		2.8%		2.4%	0.0	
	Luminosity		3.7%		3.0%	—	lower
	Category subtotal		3.7%		3.0%	0.31	p _⊤ -jets
	Theory modeling	ISR/FSR	5.9%	Ren./fact. scale	12.4%	1.0	«—
×	ation	tW gen. and PS	11.0%			—	«—
	moniza	$t\bar{t}$ gen. and PS	7.5%	ME/PS match. thr.	14.1%	1.0	Not included
t,	ires hair.	PDF	2.5%	PDF	1.7%	1.0	
S	require	<i>tW/tī</i> overlap	1.4%	DR/DS scheme	2.1%	1.0	(effect
<u> </u>				Top $p_{\rm T}$ reweight.	0.4%	—	studied
a.	Category subtotal		14.8%		19.0%	0.66	in stab.
af l	Background normalization	bkg. mod.	3.6%	$t\bar{t}$ cross section	1.7%	0.0	tests)
5				Z+jets	2.6%	—	
	Category subtotal		3.6%		3.1%	0.0	
マ	Jets ization	JES common	10.0%	JES	3.8%	0.0	
0	armonic	JES flavour	5.0%			—	
S	uires hai	Jet id	0.2%			—	
a	requir	Jet res.	0.7%	Jet resolution	0.9%	0.0	
a)	Category subtotal		11.2%		3.9%	0.0	
See	Detector modeling	Lepton modeling	2.4%	Lepton ident.	1.8%	0.0	
		MET scale	4.1%	MET modeling	0.4%	0.0	
\$		MET resolution	4.5%			—	
Î		<i>b</i> -tagging	8.4%	b tagging	0.9%	0.5	«—
•				Pileup	0.4%	—	Constr.
	Category subtotal		10.6%		2.0%	0.17	using
	Total		23.3%		0.38	data	

 $\sigma(t \mid 8 \text{ TeV})_{tW} = 25.0 \pm 1.4(\text{stat}) \pm 4.4(\text{syst}) \pm 0.7(\text{lumi}) \text{ pb}$

Single top tW-chan. x-sec comb. 8 TeV

- Evidence/Observation of associated tW production reported by ATLAS (20.3 fb⁻¹) and CMS (12.2 fb⁻¹) in the dilepton channel using BDT analyses (+ profiling of syst.):
 - ATLAS: 4.2σ obs (4.0σ exp.)
 - CMS: 6.1σ obs (5.4σ exp.)

Source	Uncert	ainty
Source	(%)	(pb)
Data statistics	5.5%	1.4
Simulation statistics	1.8%	0.5
Luminosity	2.7%	0.7
Theory modeling	15.8%	4.0
Background normalization	2.3%	0.6
Jets	5.3%	1.3
Detector modeling	4.9%	1.2
Total systematics (excl. lumi)	17.5%	4.4
Total systematics (incl. lumi)	17.7%	4.4
Total uncertainty	18.6%	4.7

Sept. 2014

 $\sigma(t \mid 8 \text{ TeV})_{tW} = 25.0 \pm 1.4(\text{stat}) \pm 4.4(\text{syst}) \pm 0.7(\text{lumi}) \text{ pb}$

Stability tests are performed changing correlation assumptions.

The max observed change in the combined uncertainty is -0.6 pb (changing theory modelling correlations)

$$w_{\text{ATL}} = 43\%$$
 $\text{Prob}(\chi^2) = 54\%$
 $w_{\text{CMS}} = 57\%$ $\rho_{\text{tot}} = 38\%$

 $|V_{tb}| > 0.79 @ 95\%$ C.L.

Top quark mass

Jun. 2012, Sep. 2013, ...

m_{top} combination(s)

- First combination implementing the recommended JES subcategories and correlations (triggered the efforts in the TOPLHCWG Jet/MET liaison group).
- Milestone for the subsequent Tevatron+LHC m_{top} combination (using the same input measurements for the LHC)... –» see Y. Peter's talk

Uncertainty Categories						Size	GeV]			Corre	elation
			AT	LAS		CMS		LHC	ρ_{exp}	ρ_{LHC}	
Tevatron		ATLAS	CMS	2011	2011	2011	2011	2011			
		l+jets	di-l	<i>l</i> +jets	di-l	all jets	comb				
Measured <i>m</i> _{top}			172.31	173.09	173.49	172.50	173.49	173.29			
Jet Scale Factor			0.27		0.33						
bJet Scale Factor			0.67								
	iJES	Sum (statist	ical comp.)	0.72		0.33			0.26	0	0
		uncorrelated	JES comp.	0.61	0.73	0.24	0.69	0.69	0.29	1	0
	dJES	in-situ γ/Z	JES comp.	0.29	0.31	0.02	0.35	0.35	0.10	1	0
		intercalib.	JES comp.	0.19	0.39	0.01	0.08	0.08	0.07	1	0.5
	aJES	flavour JE	ES comp.	0.36	0.02	0.11	0.58	0.58	0.16	1	0.0
	bJES	<i>b</i> -jet ener	gy scale	0.08	0.71	0.61	0.76	0.49	0.43	1	0.5
		MC Ge	nerator	0.19	0.20	0.02	0.04	0.19			
		Hadronisation		0.27	0.44						
	MC	Sum		0.33	0.48	0.02	0.04	0.19	0.14	1	1
		ISR/FSR		0.45	0.37						
	Rad		Q^2 -scale			0.24	0.55	0.22			
Signal			Jet-Parton scale			0.18	0.19	0.24			
		Su	m	0.45	0.37	0.30	0.58	0.33	0.32	1	1
	CR	Colour reconnection		0.32	0.29	0.54	0.13	0.15	0.43	1	1
	-	Underlying event		0.12	0.42	0.15	0.05	0.20	0.17	1	1
	PDF Proton PDF		0.17	0.12	0.07	0.09	0.06	0.09	1	1	
	Jet Resolution		0.22	0.21	0.23	0.14	0.15				
		Jet Reco H	Efficiency	0.05							
		E_T^m	iss	0.03	0.05	0.06	0.12				
	DetMod	Su	m	0.23	0.22	0.24	0.18	0.28	0.20	1	0
		b-tag	ging	0.81	0.46	0.12	0.09	0.06	0.25	1	0.5
LepPt Lepton reconstruction			0.04	0.12	0.02	0.14		0.01	1	0	
Background from MC				0.14	0.13	0.05		0.08	1	1	
Background from Data			0.10				0.13	0.04	0	0	
Method			0.13	0.07	0.06	0.40	0.13	0.06	0	0	
Multiple Hadronic Interactions			0.03	0.01	0.07	0.11	0.06	0.05	1	1	
Statistics			0.23	0.64	0.27	0.43	0.69	0.23			
Systematics			1.53	1.50	1.03	1.46	1.23	0.92			
Total Uncertainty				1.55	1.63	1.06	1.52	1.41	0.95		
		(Comb. Coeff. [%]	22.6	3.6	60.6	-8.4	21.6	$\chi^2/\text{ndf} =$	1.8/4	
			Pull	-0.80	-0.15	0.41	-0.67	0.19	χ^2 prob	= 77%	

 $m_{\rm top} = 173.29 \pm 0.23 ({\rm stat}) \pm 0.92 ({\rm syst}) \,\,{\rm GeV}^{\,(0.5\%)}$

-» see E. Schieckau's talk

New measurements awaiting combination, values in GeV:

G. Cortiana 24

. σ(m_{top}) [MeV ATLAS + CMS Preliminary, √s = 7 TeV 50F 2012, Sep. 2013,

-50

First combination implementing the recommended JES sub--150 categories and correlations fixed -200 triggered the efforts in the fixed -250 TOP/LHCWG Jet/MET, iang n -300 group HC m_{top} combination, September 2013 ■350 Milestone for the subsequent 100 Tevatron+LHC m. Multiplicative factor, f, to ρ, and ρ combination (using the same and $\rho_{\rm LHC}$ [%] input measurements for the HC). 200 150 100 ±00 0 0 0 + CMS Preliminary, $\sqrt{s} = 7$ 1 -50 -100 -150 LHC m_{top} combination, September 2013 -200 50% %00 50% %00 80 م. المراقع (btag)=100% hadr CMS CMS ρ_{LHC}(btag)= ρ_{LHC}(flavJES)= emove ATL DetMod)= -(SJLd) ATL (btag): (intJES) flavJES) PDF) PLHC (insJES) alternative P_{LHC}^U P_{LHC}

m_{top} combination(s)

Uncertainty Categories					Size [GeV]						elation
			ATI	LAS		CMS		LHC	ρ_{exp}	ρ_{LHC}	
Т	evatron	ATLAS	CMS	2011	2011	2011	2011	2011		7	,
		l+jets	di-l	<i>l</i> +jets	di-l	all jets	comb				
Measured <i>m</i> _{top}			172.31	173.09	173.49	172.50	173.49	173.29			
Jet Scale Factor			0.27		0.33						
		bJet Scale Factor		0.67							
	iJES	Sum (statisti	ical comp.)	0.72		0.33			0.26	0	0
		uncorrelated	JES comp.	0.61	0.73	0.24	0.69	0.69	0.29	1	0
	dJES	in-situ γ/Z .	JES comp.	0.29	0.31	0.02	0.35	0.35	0.10	1	0
		intercalib. J	ES comp.	0.19	0.39	0.01	0.08	0.08	0.07	1	0.5
	aJES	flavour JE	S comp.	0.36	0.02	0.11	0.58	0.58	0.16	1	0.0
	bJES	<i>b</i> -jet ener	gy scale	0.08	0.71	0.61	0.76	0.49	0.43	1	0.5
		MC Gei	nerator	0.19	0.20	0.02	0.04	0.19			
		Hadronisation		0.27	0.44	(0.58)	(0.76)	(0.93)			
	MC	Su	m	0.33	0.48	0.02	0.04	0.19	0.14	1	1
		ISR/FSR	-2 -	0.45	0.37						
Signal			Q^2 -scale			0.24	0.55	0.22			
		~	Jet-Parton scale			0.18	0.19	0.24			
	Rad	Su	Sum		0.37	0.30	0.58	0.33	0.32	1	1
	CR	Colour reconnection		0.32	0.29	0.54	0.13	0.15	0.43		1
	- DDE	Underlyn	Underlying event		0.42	0.15	0.05	0.20	0.17		
	PDF Proton PDF		0.17	0.12	0.07	0.09	0.00	0.09	1	1	
		Jet Reso	olution	0.22	0.21	0.23	0.14	0.15			
		Jet Keco E	iss	0.03	0.05	0.06	0.12				
	DatMad			0.03	0.03	0.00	0.12	0.28	0.20	1	0
	Deuviou	b tag	aina	0.23	0.22	0.24	0.18	0.26	0.20	1	0.5
<i>D</i> -tagging		0.01	0.40	0.12	0.09	0.00	0.23	1	0.5		
Background from MC			0.04	0.12	0.02	0.14		0.01	1	1	
Background from Data			0.10	0.14	0.15	0.05	0.13	0.00	0	0	
Method			0.10	0.07	0.06	0.40	0.13	0.04	0	0	
Multiple Hadronic Interactions			0.03	0.07	0.00	0.40	0.15	0.00	1	1	
Statistics			0.03	0.01	0.07	0.11	0.00	0.03	1	1	
Statistics			0.23	0.64	0.27	0.43	0.69	0.23			
Systematics			1.55	1.50	1.05	1.40	1.23	0.92			
Total Uncertainty			1.55	1.05	1.00	1.32	1.41	0.95	1.0/4		
		(Comb. Coeff. [%]	22.6	3.6	60.6	-8.4	21.6	$\chi^2/\text{ndf} =$	1.8/4	
Pull				-0.80	-0.15	0.41	-0.67	0.19	χ^2 prob =	= 77%	

- Ongoing discussion on the double counting of the hadronization and JES systematics.
 - Both experiments are at work to get quantitative results on this issue. Expect convergence soon...

Other top quark properties

Mar. 2013

W boson polarization

Multi-parameter combination: correlation between F_L and F_0 needs to be taken into account ($F_R = 1 - F_L - F_0$)

Results used to constrain anomalous couplings in the Wtb vertex (g_R, g_I)

$$F_0 = 0.626 \pm 0.034 (\text{stat}) \pm 0.048 (\text{syst})^{(9.5\%)}$$

$$F_L = 0.359 \pm 0.021 (\text{stat}) \pm 0.028 (\text{syst})^{(9.7\%)}$$

The combination does not include new CMS results:

I+jets:	<u>JHEP 10 (2013) 167</u>	(7 TeV)
	<u>CMS PAS TOP-13-008</u>	(8 TeV)
dilep:	<u>CMS PAS TOP-12-015</u>	(7 TeV)
single top:	CMS PAS TOP-12-020	(8 TeV)

	LHC con	nbination
Category	F_0	F_L
Detector modeling		
Detector model	0.019	0.011
Jet energy scale	0.020	0.012
Luminosity and pile-up	0.006	0.003
Signal and background mod	eling	
Monte Carlo	0.012	0.008
Radiation	0.024	0.012
Top-quark mass	0.019	0.012
PDF	0.008	0.004
Background (MC QCD)	0.003	0.001
Background (MC W + jets)	0.007	0.002
Background (MC other)	0.011	0.006
Background (data-driven)	0.013	0.008
Method-specific uncertaintie	?S	
Method	0.008	0.005
Total uncertainties		
Total systematic uncertainty	0.048	0.028
Statistical uncertainty	0.034	0.021
Total uncertainty	0.059	0.035

Mar. 2014

Charge asymmetry

Input measurements: top-quark based asymmetries obtained from the lepton+jets channel (full event reconstruction)

- Corrected for detector/acceptance effects (unfolded)
- Input measurements (and the combination) dominated by statistical uncertainties.

$$w_{\rm ATL} = 65\% \quad \text{Prob}(\chi^2) = 91\%$$

 $w_{\rm CMS} = 35\% \qquad \rho_{\rm tot} = 6\%$

 $A_C = 0.005 \pm 0.007 (\text{stat}) \pm 0.006 (\text{syst})$

TOP-2014

Total uncertainty improvement of 18% (40%) with respect to the ATLAS (CMS) inputs

		ATLAS	CMS	Comb.	Corr.
	A_C	0.006	0.004	0.005	0.058
	Statistical	0.010	0.010	0.007	0
	Detector response model	0.004	0.007	0.004	0
	Signal model	< 0.001	0.002	0.001	1
ties	W+jets model	0.002	0.004	0.003	0.5
ain	QCD model	< 0.001	0.001	0.000	0
čert	Pileup+MET	0.002	< 0.001	0.001	0
Jnc	PDF	0.001	0.002	0.001	1
	MC statistics	0.002	0.002	0.001	0
	Model dependence				
	Specific physics models	< 0.001	*	0.000	0
	General simplified models	*	0.007	0.002	0
	Systematic uncertainty	0.005	0.011	0.006	
	Total uncertainty	0.011	0.015	0.009	

Overview	$\sigma(tar{t})$ [pb]				
(Sept. 2014)	$7 { m TeV}$	$8 { m TeV}$			
value	173.3	241.4			
statistics (\star)	2.8	1.4			
MC model/ theory	4.9	4.1			
Detector model (\dagger)	4.6	2.7			
$JES/Jets (\odot)$	2.1	1.7			
Background	2.3	2.3			
Luminosity	6.3	6.2			
Total uncertainty	10.1	8.5			
Relative unc. $[\%]$	5.8	3.5			

- (\star) includes data statistics and method calibration uncertainties
- (\dagger) when not available separately, includes luminosity and JES
- (\odot) when not available separately includes jet resolution and jet reconstruction systematics

Overview				
(Sept. 2014)	7	TeV	8	TeV
value	173.3		241.4	
statistics (\star)	2.8	(0.08)	1.4	(0.03)
MC model/ theory	4.9	(0.23)	4.1	(0.23)
Detector model (\dagger)	4.6	(0.21)	2.7	(0.10)
$JES/Jets (\odot)$	2.1	(0.04)	1.7	(0.04)
Background	2.3	(0.05)	2.3	(0.07)
Luminosity	6.3	(0.39)	6.2	(0.53)
Total uncertainty	10.1		8.5	
Relative unc. $[\%]$	5.8		3.5	

Values in brackets are defined as:

 $\sigma_i^2/\sigma_{\rm tot}^2$

highlights the main contributions

- (\star) includes data statistics and method calibration uncertainties
- (+) when not available separately, includes luminosity and JES
- (\odot) when not available separately includes jet resolution and jet reconstruction systematics

Overview		$\sigma(t\bar{t}$) [pb]		T			
(Sept. 2014)	7	TeV	8	TeV			hundrata ana dafina d	σ^2/σ^2
value	173.3		241.4			values in	brackets are defined	as: O_i / O_{tot}
statistics (\star)	2.8	$(0.08)^{\circ\circ}$	1.4	$(0.03)^{ imes \circ}$			highlights the ma	in contributions
MC model/ theory	4.9	$(0.23)^{\bullet\bullet}$	4.1	$(0.23)^{\times *}$			nighights the me	
Detector model (†)	4.6	$(0.21)^{\bullet \circ}$	2.7	$(0.10)^{\times \circ}$		$\mathbf{\Theta}$ \mathbf{O}	ХО	
JES/Jets (\odot)	2.1	$(0.04)^{\bullet \circ}$	1.7	$(0.04)^{\times *}$				` .
Background	2.3	$(0.05)^{**}$	2.3	$(0.07)^{\times *}$		V S		A
Luminosity	6.3	$(0.39)^{\bullet*}$	6.2	$(0.53)^{\times *}$		$ ho_{ m exp},$	PLHC Perp	, $\rho_{\rm LHC}$
Total uncertainty	10.1		8.5		1		i.e.: on	e input / experiment
Relative unc. [%]	5.8		3.5					•

- (\star) includes data statistics and method calibration uncertainties
- (\dagger) when not available separately, includes luminosity and JES
- (\odot) when not available separately includes jet resolution and jet reconstruction systematics

Overview		$\sigma(t\bar{t})$ [pb]					
(Sept. 2014)	7	TeV	8				
value	173.3		241.4				
statistics (\star)	2.8	$(0.08)^{\circ \circ}$	1.4	$(0.03)^{ imes \circ}$	Γ		
MC model/ theory	4.9	$(0.23)^{\bullet \bullet}$	4.1	$(0.23)^{\times *}$			
Detector model (\dagger)	4.6	$(0.21)^{\bullet \circ}$	2.7	$(0.10)^{\times \circ}$			
$JES/Jets (\odot)$	2.1	$(0.04)^{\bullet \circ}$	1.7	$(0.04)^{\times *}$			
Background	2.3	$(0.05)^{**}$	2.3	$(0.07)^{\times *}$			
Luminosity	6.3	$(0.39)^{\bullet*}$	6.2	$(0.53)^{\times *}$			
Total uncertainty	10.1		8.5		1		
Relative unc. $[\%]$	5.8		3.5				

∘, ∗, ●

stand for uncorrelated, partially correlated and fully correlated uncertainty.

- (+) when not available separately, includes luminosity and JES
- (\odot) when not available separately includes jet resolution and jet reconstruction systematics

Overview		$\sigma(t\bar{t})$	$(t\bar{t})$ [pb]		Ţ	
(Sept. 2014)	7 '	TeV	8 TeV			Values in breakets are defined as: σ^2/σ^2
value	173.3		241.4			values in brackets are defined as: O_i / O_{tot}
statistics (\star)	2.8	$(0.08)^{\circ\circ}$	1.4	$(0.03)^{ imes \circ}$		highlights the main contributions
MC model/ theory	4.9	$(0.23)^{\bullet\bullet}$	4.1	$(0.23)^{\times *}$		
Detector model (\dagger)	4.6	$(0.21)^{\bullet \circ}$	2.7	$(0.10)^{\times \circ}$		● O X O
$JES/Jets (\odot)$	2.1	$(0.04)^{\bullet \circ}$	1.7	$(0.04)^{\times *}$		
Background	2.3	$(0.05)^{**}$	2.3	$(0.07)^{\times *}$		
Luminosity	6.3	$(0.39)^{\bullet*}$	6.2	$(0.53)^{\times *}$		$\rho_{\rm exp}, \rho_{\rm LHC} \rightarrow \rho_{\rm exp}, \rho_{\rm LHC}$
Total uncertainty	10.1		8.5		T	i.e.: one input / experiment
Relative unc. $[\%]$	5.8		3.5			
Best single meas.	182.9	0 ± 6.3	242.	4 ± 9.5	T	○. *. ●
Ref (ATTAS CMS)	ar	Xiv	r a	rXiv		
	1400	6.5375	140	6.5375		stand for uncorrelated, partially correlated and
						O : I I I I I I I I

Single best meas. better than combined result. Combination needs to be updated!

- (+) when not available separately, includes luminosity and JES
- (\odot) when not available separately includes jet resolution and jet reconstruction systematics

Overview	$\sigma(t\bar{t})$		[pb]		$\sigma(t)$ 8 TeV [pb]			
(Sept. 2014)	7	TeV	8 TeV		t-ch		$\mathrm{t}W$	
value	173.3		241.4		85.3		25.0	
statistics (\star)	2.8	$(0.08)^{\circ\circ}$	1.4	$(0.03)^{ imes \circ}$	4.1	$(0.11)^{\times \circ}$	1.5	$(0.10)^{\times \circ}$
MC model/ theory	4.9	$(0.23)^{\bullet \bullet}$	4.1	$(0.23)^{\times *}$	7.7	$(0.40)^{\times *}$	4.0	$(0.72)^{\times *}$
Detector model (\dagger)	4.6	$(0.21)^{\bullet \circ}$	2.7	$(0.10)^{\times \circ}$	5.5	$(0.20)^{\times *}$	1.2	$(0.06)^{\times *}$
$JES/Jets$ (\odot)	2.1	$(0.04)^{\bullet \circ}$	1.7	$(0.04)^{\times *}$	4.5	$(0.14)^{\times \circ}$	1.3	$(0.08)^{ imes \circ}$
Background	2.3	$(0.05)^{**}$	2.3	$(0.07)^{\times *}$	3.2	$(0.07)^{\times *}$	0.6	$(0.02)^{\times \circ}$
Luminosity	6.3	$(0.39)^{\bullet*}$	6.2	$(0.53)^{\times *}$	3.4	$(0.08)^{\times *}$	0.7	$(0.02)^{\times *}$
Total uncertainty	10.1		8.5		12.2		4.7	
Relative unc. $[\%]$	5.8		3.5		14.3		18.8	
Best single meas.	182.9	9 ± 6.3	242.4	4 ± 9.5	83.	6 ± 7.8	27.2	2 ± 5.8
Ref (ATLAS CMS)	a	rXiv	arXiv		JHEP		ATL-CONF	
	140	6.5375	140	6.5375	$06\ (2014)\ 090$		2013-100	

Overview	$m_{\rm top} [{\rm GeV}]$			W pola	A_C			
(Sept. 2014)				F_0		F_L		
value	173.29		0.626		0.359		0.005	
statistics (\star)	0.24	$(0.06)^{\circ \circ}$	0.035	$(0.35)^{\circ\circ}$	0.022	$(0.38)^{\circ\circ}$	0.007	$(0.61)^{ imes \circ}$
MC model/ theory	0.59	$(0.38)^{\bullet \bullet}$	0.034	$(0.33)^{\bullet*}$	0.019	$(0.30)^{\bullet*}$	0.002	$(0.07)^{\times *}$
Detector model (\dagger)	0.32	$(0.12)^{\bullet \circ}$	0.020	$(0.11)^{\bullet \circ}$	0.011	$(0.11)^{\bullet \circ}$	0.004	$(0.21)^{\times \circ}$
$JES/Jets (\odot)$	0.61	$(0.42)^{\bullet*}$	0.020	$(0.11)^{\bullet \circ}$	0.012	$(0.12)^{\bullet \circ}$		
Background	0.09	$(0.01)^{**}$	0.019	$(0.10)^{\bullet \circ}$	0.010	$(0.09)^{\bullet \circ}$	0.003	$(0.11)^{\times *}$
Luminosity								
Total uncertainty	0.95		0.059		0.035		0.009	
Relative unc. $[\%]$	0.5		9.5		9.7		181	
Best single meas.	172.22	2 ± 0.73	0.659	± 0.027	0.350	± 0.026	0.006	± 0.011
Ref (ATLAS CMS)	CMS-P	AS-TOP	CMS-I	PAS-TOP	CMS-I	PAS-TOP	J	HEP
$\mathbf{M} = \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}$	14	-001	13	8-008	13	3-008	1402 (2014) 107

Comments

- Statistically limited measurements (e.g. W pol., charge asym.)
 - Largest gain in combination precision (should keep them up-to-date!)
 - Largely unaffected by variation of systematic uncertainty correlations

Comments

- Statistically limited measurements (e.g. W pol., charge asym.)
 - Largest gain in combination precision (should keep them up-to-date!)
 - Largely unaffected by variation of systematic uncertainty correlations

- Systematics dominated measurements (e.g m_{top}/ top quark pair x-sec)
 - Challenging combination
 - Trigger harmonization efforts (trade-off w.r.t the policies / recommendations within each experiment), further refinements of modelling uncertainties, and MC details
 - Largest gain in understanding complementarities and differences between measurements and approaches to evaluate the uncertainties

Conclusions

The TOPLHCWG is very successful

- Combinations: cross sections top-pair and single top (t-ch. Wt-ch.), LHC top mass (x2), first Tevatron+LHC top mass (not covered in this talk), charge asymmetry, W helicity. New results are in the works (differential x-sec...)
- Progress in JES and *b*-tagging systematics categorisation, work ongoing for the signal modelling and theory uncertainties (radiation, hadronization, ...)
- Experiments are finalizing their Run-I results, next round of combination to follow...

Conclusions

The TOPLHCWG is very successful

- Combinations: cross sections top-pair and single top (t-ch. Wt-ch.), LHC top mass (x2), first Tevatron+LHC top mass (not covered in this talk), charge asymmetry, W helicity. New results are in the works (differential x-sec...)
- Progress in JES and *b*-tagging systematics categorisation, work ongoing for the signal modelling and theory uncertainties (radiation, hadronization, ...)
- Experiments are finalizing their Run-I results, next round of combination to follow...
- Prospects (personal view):

from *"after burner"* to *"production mode"*

- proactive planning and coordination of methods, analysis/statistics tools, systematic categorization/treatment (beforehand)
- Identification of areas/topics needing improvements:
 - Investigate/mitigate double counting effects among different sources
 - Harmonize the sources of uncertainty and their evaluation / understand complementarities
- Improving on the combination cycles (timely combination, closely following the availability of the inputs)

References

- Combination of ATLAS and CMS top-quark pair cross section measurements using up to 1.1 fb⁻¹ of data at 7 TeV <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-134/</u>
- Combination of single top-quark cross-section measurements in the t-channel at √s = 8 TeV with the ATLAS and CMS experiments

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-098/

- Combination of ATLAS and CMS results on the mass of the top-quark using up to 4.9 fb⁻¹ of √s =7 TeV LHC data <u>http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-102/</u>
- Combination of ATLAS and CMS ttbar charge asymmetry measurements using LHC proton-proton collisions at √s = 7 TeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-012/

- Combination of the ATLAS and CMS measurements of the W-boson polarization in top-quark decays <u>http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-033/</u>
- Combination of cross-section measurements for associated production of a single top-quark and a W boson at sqrt(s)=8 TeV with the ATLAS and CMS experiments <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-052/</u>
- Combination of ATLAS and CMS top-quark cross-section measurements using proton-proton collisions at sqrt(s)= 8 TeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-054/

- Jet energy scale uncertainty correlations between ATLAS and CMS
 - To appear :ATL-PHYS-PUB-2014-015 and CMS-PAS-JME-14-003
- Full list of public results and recommendations are available at:
 - http://lpcc.web.cern.ch/LPCC/index.php?page=top wg docs
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TopLHCWG

- We use the BLUE method = Best Linear Unbiased Estimator
 - the same techniques employed for
 - the LEPEWWG fits
 - the Tevatron and LHC top mass combinations...
- Advantages of using BLUE for m_{top} combination
 - it allows a directly comparison of the LHC and Tevatron results
 - it allow to perform readily a World combination (LHC+Tevatron)

BLUE determines the optimal set of coefficients (or weights) to be used in a linear combination of the input measurements, <u>minimizing the total uncertainty on the combined result</u>, taking into account statistical and systematic uncertainties and their correlations.

It is equivalent to a χ^2 minimization:

$$\chi^2 = [x\vec{e} - \vec{x}]^T \cdot V^{-1}(\vec{x}) \cdot [x\vec{e} - \vec{x}]$$

where, V = covariance matrix. For example for two measurements, and an uncertainty source S, it reads:

$$V_{\rm S} = \begin{pmatrix} \sigma_{1\rm S}^2 & \rho_{1\rm 2S} \, \sigma_{1\rm S} \, \sigma_{2\rm S} \\ \rho_{1\rm 2S} \, \sigma_{1\rm S} \, \sigma_{2\rm S} & \sigma_{2\rm S}^2 \end{pmatrix}$$

- Let us take as example the combination of two measurements, x_1 and x_2 .
- Let us define $z = \sigma_2/\sigma_1$ and let it be z>1 (i.e.: let the second measurement be less precise than the first). The BLUE method will give:

$$x = \alpha x_1 + \beta x_2$$

with: $1 = \alpha + \beta$

(or weights)

The relative improvement with respect to the most precise measurements, and the weight of the second measurement can be expressed as $\frac{\sigma_{x}}{\sigma_{1}} = \sqrt{\frac{z^{2}(1-\rho^{2})}{1-2\rho z+z^{2}}},$ $\beta = \frac{1-\rho z}{1-2\rho z+z^{2}}.$

 ρ = correlation between

measurements 1 and 2

Two important things to note:

1. The relative improvement of the combination and the weights of the input measurements depend only on their precisions and correlations: they are independent of the actual measured values, x_1 and x_2 .

Two important things to note:

- 1. The relative improvement of the combination and the weights of the input measurements depend only on their precisions and correlations: they are independent of the actual measured values, x_1 and x_2 .
- 2. Depending on the precision of the measurements and their correlation, negative weights can occur for the less precise measurement as soon as ρ >1/z

Top quark pair x-sec @ 7 TeV

	ATLAS	CMS	Correlation	LHC combination
Cross-section	177.0	165.8		173.3
Uncertainty				
Statistical	3.2	2.2	0	2.3
Jet Enegy Scale	2.7	3.5	0	2.1
Detector model	5.3	8.8	0	4.6
Signal model				
Monte Carlo	4.2	1.1	1	3.1
Parton shower	1.3	2.2	1	1.6
Radiation	0.8	4.1	1	1.9
PDF	1.9	4.1	1	2.6
Background from data	1.5	3.4	0	1.6
Background from MC	1.6	1.6	1	1.6
Method	2.4	n/e	0	1.6
W leptonic branching ratio	1.0	1.0	1	1.0
Luminosity				
Bunch current	5.3	5.1	1	5.3
Luminosity measurement	4.3	5.9	0	3.4
Total systematic	10.8	14.2		9.8
Total	11.3	14.4		10.1

- $w_{\rm ATL} = 67\%$ $\operatorname{Prob}(\chi^2) = 47\%$ $w_{\rm CMS} = 33\%$ $\rho_{\rm tot} = 30\%$
- Use as input the individual experiment combinations:
 - $\sigma(t\bar{t} \mid 7 \text{ TeV}) = 173.3 \pm 2.3(\text{stat}) \pm 7.6(\text{syst}) \pm 6.3(\text{lumi})$

Single top t-channel x-sec 8 TeV

 $\sigma(t \mid 8 \text{ TeV})_{t-ch} = 85.3 \pm 4.1(\text{stat}) \pm 11.0(\text{syst}) \pm 3.4(\text{lumi})$ 14.8%

Uncertainty breakdown

Source	Uncertainty (pb)
Statistics	4.1
Luminosity	3.4
Simulation and modelling	7.7
Jets	4.5
Backgrounds	3.2
Detector modelling	5.5
Total systematics (excl. lumi)	11.0
Total systematics (incl. lumi)	11.5
Total uncertainty	12.2

Updated measurements available:

ATLAS: <u>ATLAS-CONF-2014-007</u> $\sigma(t\text{-channel}) = 82.6 \pm 12.1 \text{ pb}$ CMS: <u>arxiv:1403.7366</u> $\sigma(t\text{-channel}) = 83.6 \pm 7.8 \text{ pb}$

Stability tests

Total uncert.		19.2%		16.0%	0.38
Total	10.3%			6.9%	0.27
	lepton scale	2.1%			0
	lepton res.	2.2%			0
			μ trigger + reco.	5.1%	0
	lepton eff.	4.1%			0
			pile up	0.5%	0
	Jet Vertex fraction	1.6%	1		0
	E ^{miss}	2.3%	Unclustered $E_{\rm T}^{\rm miss}$	1.0%	0
Detector modelling	b-tagging	8.5%	b-tagging	4.6%	0.5
Total		3.5%		5.0%	0.19
			W+jets, tt (data-driven)	4.5%	0
	Multijet (data-driven)	3.1%	Multijet (data-driven)	0.9%	0
Backgrounds	Norm. to theory	1.6%	Norm. to theory	2.1%	1
Total		8.3%		6.8%	0
	Jet res. & reco.	3.0%	Jet res.	0.7%	0
Jets	JES	7.7%	JES	6.8%	0
Total		12.3%		7.8%	0.83
	Parton shower/had.	0.8%			0
	tt generator	3.3%			0
	t-ch. generator	7.1%	t-ch. generator	5.5%	1
U	PDF	2.8%	PDF	4.6%	1
Simulation and modelling	ISR/FSR	9.1%	Q^2 scale	3.1%	1
Total	3.6% 4.4		4.4%	0.78	
•	Long-term stability	2.0%	Long-term stability	1.6%	0
Luminosity	Calibration	3.0%	Calibration	4.1%	1
Total		3.8%		7.5%	0
	Stat. sim.	2.9%	Stat. sim.	2.2%	0
Statistics	Stat. data 2.4%		Stat. data	7.1%	0
Category	ATLAS		CMS		ρ

	Source	Default ρ	Test ρ	Shift: central value (pb)	Shift: uncertainty (pb)	2507 D 1(2)) 9707
	Luminosity calibration	1	0.5/0	+0.1/+0.1	-0.1/-0.2	$w_{\rm ATL} = 35\%$ Prob (χ^2)) = 31%
	Simulation and modelling	1	0.5/0	+0.4/+0.7	-0.5/-1.1	$w_{\rm GMG} = 65\%$ $\rho_{\rm tot}$	$_{+} = 38\%$
	JES	0	0.5/1	-0.4/-0.8	+0.3/+0.6	$w_{\rm CMS} = 0070$ Pto	
wsik	b-tagging	0.5	0/1	+0.2/-0.3	-0.2/+0.2	G. Cortiana	46

Probing the Wtb vertex

Angular distribution of leptons from W in a given reference frame:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^X} = \frac{3}{8} (1 + \cos\theta^X)^2 F_+^X + \frac{3}{8} (1 - \cos\theta^X)^2 F_-^X + \frac{3}{4} \sin^2\theta^X) F_0^X$$

where : X = *

For un-polarised top quark decays (e.g. top-quark pair production) use the helicity basis, exploit the W boson momentum direction (q) in the top quark rest frame

 $-\frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(g_LP_L+g_RP_R)tW_{\mu}^-+\text{h.c.}$

In an effective operator framework: W helicity fractions (*) can probe the real part of the couplings

$$\mathrm{SM}^{\mathrm{tree\ level}}: \mathrm{V}_{\mathrm{L}} = \mathrm{V}_{\mathrm{tb}} \approx 1 \ \mathrm{and} \ \mathrm{V}_{\mathrm{R}} = \mathrm{g}_{\mathrm{L}} = \mathrm{g}_{\mathrm{R}} = 0$$

