Model uncertainties in top-quark physics

Markus Seidel

Universität Hamburg on behalf of the ATLAS and CMS collaborations Prepared with the help of Liza Mijović

Sep 30, 2014

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Markus Seidel (UHH)

Model uncertainties in top-quark physics

Introduction

- Many top-quark measurements limited by systematic uncertainties
 - Top-quark mass world combination (arXiv:1403.4427)

 $m_t = 173.34 \pm 0.27 \text{ (stat.)} \pm 0.24 \text{ (iJES)} \pm 0.67 \text{ (syst.)}$ GeV

LHC t-channel combination (ATLAS-CONF-2013-098, CMS TOP-12-002)

 $\sigma_{\text{t-ch.}} = 85 \pm 4 \text{ (stat.)} \pm 11 \text{ (syst.)} \pm 3 \text{ (lumi.) pb}$

- Large impact of signal modeling uncertainties
- Get reasonable estimates, using input from theory and experiments

Event anatomy / outline

MCnet standard tuning strategy (arXiv:1101.2599)

- **1** Tune FSR and hadronization to e^+e^- data (LEP, SLD, b-factories)
- 2 Tune ISR (and FSR off ISR) to proton data (Tevatron, LHC)
- 3 Tune MPI to proton data

(Tevatron, LHC)

Perturbative QCD

PDF

- PDF4LHC prescription: envelope of CT10, MSTW2008, NNPDF2.3, including α_s variations (±0.0012)
- Occasionally used in insensitive analyses: CT6/CT10 variations (+MSTW2008/NNPDF2.3 central values)
 Point for discussion: one PDF set with all relevant uncertainties?
- Markus Seidel (UHH)

$t\bar{t}$ MC generator uncertainty

TOP LHC WG guidelines

(https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TheorySystematics)

- Comparison of central predictions from different generators
- Use at least 1 multileg and 1 NLO generator setup
- In general: difficult to disentangle underlying effects

ATLAS Default setup: Powheg+Pythia6 (until ~TOP2013: MC@NLO+Herwig6)

- Quoted as MC generator: Powheg+Pythia6 vs. MC@NLO+Herwig6 (vs. Alpgen+Herwig6)
- CMS Default setup: MadGraph+Pythia6
 - Quoted as MC generator: MadGraph+Pythia6 vs. Powheg+Pythia6 (became larger for *m_t* when spin correlations were included in MadGraph)

Initial state radiation uncertainties

 ATLAS Vary ren. scale in Alpgen+Pythia by factors 1/2 and 2
 CMS Vary ren. and fact. scales in MadGraph+Pythia by 1/2 and 2 Vary ME-PS matching threshold

• High-precision tests of QCD in $t\bar{t}$ production!

Radiation in resonance decays

Precision better than LL due to ME corrections in Z/W/t decay

- FSR in resonance decays constrained by LEP
 - Thrust (left)

$$I = 1$$
 back-to-back

$$T = 1/2$$
 isotropic

- Jet shapes in tt
 t events
 - Relative momentum distribution inside jets
 - FSR scale drives jet broadening

ATLAS jet shapes data from arXiv:1307.5749

$t\bar{t}$ top-quark p_T (mis)modeling

- CMS sees softer top p_T in data, agreement with ATLAS at high p_T
- Powheg+Herwig6 seems to agree with data, rescaling of t, t
 , j momenta to give virtuality to extra jet [P. Nason, https://indico.cern.ch/event/301787]
- Different reshuffling schemes implemented in Herwig++ 2.7.1
- Pythia8: dipole-recoil vs. global recoil
- NNLO might be able to resolve
- CMS short-term solution: uncertainty from top p_T reweighting (similar approach at D0 for tt p_T)

Single-top *t*-channel

- 5FS: massless b in proton, b-jet from parton shower
- 4FS: ME description of additional b-quark
- $\blacksquare \text{ Matched scheme adds } 2 \rightarrow 2 \\ \text{and } 2 \rightarrow 3 \text{ LO diagrams}$
- NLO generators provide automatic matching

 Comparison of all three schemes in new measurements (CMS TOP-14-004)
 Run1 defaults: ATLAS AcerMC+Pythia6 (4FS+5FS LO) Powheg+Pythia6 (4FS NLO) NEW CMS Powheg+Pythia6 (5FS NLO)
 Plan for Run2: 4FS at NLO (Powheg and aMCatNLO)

Single-top *tW*-channel

- Default setup: Powheg+Pythia6
- tW at NLO similar to $t\overline{t}$
- Diagram removal: remove double-resonant diagrams from signal definition
- Diagram subtraction: implement a subtraction term to cancel the *tt* contribution locally
- DR/DS comparison, impact on cross-section measurement small
- Future: treat as WbWb final state? (→ Jan's talk)

Soft QCD

Hadronization model: String vs. cluster

- Detector response may vary with momenta and types of hadrons
- Similar e⁺e⁻ tunings → different predictions for LHC
- Explore different models and sensible parameter variations

Hadronization model: Pythia vs. Herwig

- Comparison non-trivial due to different shower, matching, UE/MPI
- Possibility to spot previously unnoticed effects (top p_T)

ATLAS

- Powheg+Pythia6 vs. Powheg+Herwig6 in tt and single top (complete analysis)
- - Pythia6 vs. Herwig++ in JES (flavour-dep.)
 - Cross-checks: b-JES from Z+b events NEW Powheg+Pythia6 vs. MC@NLO/Powheg+Herwig6 in tt
- CDF Pythia vs. Herwig in $t\overline{t}$ and in JES
- D0 Alpgen+Pythia vs. Alpgen+Herwig in $t\bar{t}$ Analysis on particle-level jets, after reco selection

Hadronization model: Cluster vs. string in Sherpa

- Comparison of cluster and string in Sherpa 2.1.0, same parton shower
- Left: Tuning validated in e^+e^- at $\sqrt{s} = 91$ GeV (Thrust)
- **Right**: Parton \rightarrow particle response in 8 TeV $t\bar{t}$ events

- 0.3% difference at low jet p_T , flavors agree within 0.05%
- \blacksquare Particle-level top-quark and W mass changed by \sim 10 MeV

Fragmentation functions

In string model, on string break:

• z =fraction of $(E + p_z)$ taken by new hadron

$$f_{light}(z) \propto rac{1}{z} (1-z)^{a} \exp\left(rac{-bm_{\perp}^{2}}{z}
ight)$$

- $p_{x,y}$: Distributed according to gauss, width $\sigma = 0.30 - 0.36$ GeV
- 2→3-jet transition: jet parameter y₂₃, where jet multiplicity changes between 2 and 3
- P12 FL/FT cover LEP uncertainty
- Larger difference between Pythia and Herwig++

Fragmentation functions

In string model, on string break:

• z =fraction of $(E + p_z)$ taken by new hadron

$$f_{light}(z) \propto \frac{1}{z} (1-z)^a \exp\left(\frac{-bm_{\perp}^2}{z}\right)$$

- $p_{x,y}$: Distributed according to gauss, width $\sigma = 0.30 0.36$ GeV
- 2→3-jet transition: jet parameter y₂₃, where jet multiplicity changes between 2 and 3
- P12 FL/FT cover LEP uncertainty
- Larger difference between Pythia and Herwig++

Fragmentation functions for b quarks

• Light flavour:
$$f(z) \propto \frac{1}{z} (1-z)^{a} \exp\left(\frac{-bm_{\perp}^{2}}{z}\right)$$

Heavy flavour (Bowler extension)

$$f(z) \propto \frac{1}{z^{1+r \cdot bm_{\perp}^2}} (1-z)^{\vartheta} \exp\left(\frac{-bm_{\perp}^2}{z}\right)$$

Tunable parameters: *a*, *b*, *r*

a, b same for all flavours in Pythia6, r can be separated to r_c, r_b

 Different parameter sets and functional forms (Bowler-Lund, Peterson,...)

Expect impact on

- b-tagging for jets, b jet energy scale
- Measurements using B hadrons or their decay products (J/Ψ)

Fragmentation functions for b quarks: tuning to LEP

x_B = E_B/E_{beam}, B = weakly decaying B hadron
 CMS Retuned Pythia6 Z2* to LEP data, evaluated in tt

 ATLAS Pythia tunes covering the LEP data → b-JES uncertainty

Sep 30, 2014 18 / 29

B-hadron decays

Lifetime of B hadrons

- b-tag efficiencies (constrained from data)
- CMS *m_t* from B decay length

BR $B \to \ell \nu X$

- Determines neutrino fraction in b jets, direct impact on response
- Pythia: same value for B⁺, B⁰
- CMS Envelope as uncertainty

Best parameter set in EvtGen? Used for $t\bar{t}$ mass difference ATLAS

CMS Charmed mesons in b jets NEW

CMS TOP-13-007 additional plots

- Identified $D^{0/\pm}$ and J/Ψ mesons in $t\bar{t}$ events
- \blacksquare Momentum fraction wrt (charged particles clustered in) b jet \rightarrow constrain b fragmentation
- Combine with ATLAS jet shapes (constraints on radiation)
- Goal: Measure m_t from $J/\Psi + \ell$

Underlying event

Markus Seidel (UHH)

Model uncertainties in top-quark physics

Colour reconnection

- Different empiric models possible, most common: find colour configurations with less potential energy / string length
- Connection probability steered via parameters

Colour reconnection

- Improved description of $\langle p_T \rangle$ vs. N_{ch} in minimum-bias events
- Disagreement for different cuts on particle p_T → still ambiguous and models are "crude"
- CMS ATLAS Pythia6 Tune P11 vs. P11noCR
 ATLAS Pythia6 Tune P12 vs. P12loCR NEW
- New range of CR models implemented in Pythia8 (arXiv:1407.6653) \rightarrow possibly larger effects than on/off?

Outlook

(and ongoing things)

NLO+multileg

- Accurate description of processes with additional jets
- Reduced/meaningful scale uncertainties
- 2 user-friendly frameworks with multiplicity merging for tī: aMCatNLO, SherpaNLO
- Simulate decays at NLO

Markus Seidel (UHH)

Model uncertainties in top-quark physics

> 40 Ge

 $n^{1-jet} > 60 \text{ GeV}$

> 80 GeV

×0.01

Inclusive light iet multiplicity

MEPS@NLO

S-MC@NLO

Sherpa+OpenLoops

1.65 × MEPS@LO

[qd] (¹⁹ⁱ/₁)¹ 10⁻¹

 10^{-2}

 10^{-3}

 10^{-4}

10-5

Automated generator weights

- Generate one sample, including weights for scale variations
- ME weights implemented in aMCatNLO and Powheg
- PS weights implemented in Vincia shower (FSR in resonances)

Reduce generator dependency of measurements

Core capability of experiments: Measure leptons and jets in $|\eta| \lesssim 2.5/5$

Fiducial cross sections

- Additional measurement in detector-friendly phase space
- Smaller acceptance uncertainties compared to inclusive cross section
- Final states incl. interference effects

Top reconstruction at particle-level

- Close to detector level
- Reduced theory uncertainties
- MC comparison and parameter constraints in Rivet+Professor

 \rightarrow Data preserved for all practical purposes

Summary

Summary

Estimation of systematic uncertainties frequently debated

- Useful exchange of information/opinions in TOP LHC WG
- Agreement on radiation uncertainties, will benefit from new NLO+multileg generators
- Similar Pythia variations for (b-)fragmentation, UE, CR
- Hadronization debate: string vs. cluster (aka Pythia vs. Herwig)
- Started to constrain tt modeling directly from LHC top-quark data
 New experimental results include fiducial cross sections and particle-level measurements as complementary information

