Experimental results on tt+W/Z/γ and SM top couplings

Tamara Vázquez Schröder - Georg-August-Universität Göttingen on behalf of the ATLAS, CDF, CMS and DØ Collaborations

TOP2014, Cannes — 28th September - 3rd October

prepared with the help of Thorsten Chwalek

Motivation

- $t \rightarrow Wb$ coupling:
 - Top decay: W-helicity
 - Top decay: ratio B(t→Wb)/B(t→Wq)
- tt̄ + γ
- tt + Z/W
- Conclusions

- Motivation
- The top quark couples to other SM fields through its gauge and Yukawa interactions
- t→Wb coupling measured already at the Tevatron
- High statistics top physics at the LHC: $t\bar{t}$ + bosons (γ , Z and H) becomes accessible!
- First evidence on the coupling of the top quark to these particles from **production rate**
- Important Standard Model test: **new physics** modifies the structure of the EW couplings

- The top quark couples to other SM fields through its gauge and Yukawa interactions
- t→Wb coupling measured already at the Tevatron
- High statistics top physics at the LHC: $t\bar{t}$ + bosons (γ , Z and H) becomes accessible!
- First evidence on the coupling of the top quark to these particles from **production rate**
- Important Standard Model test: new physics modifies the structure of the EW couplings

02/10/2014

02/10/2014

latest W-helicity measurements

	CDF	DØ
	Phys. Rev. D 87, 031104(R)	Phys. Rev. D 83, 032009
√s, lumi	1.96 TeV, (full dataset) 8.7 fb-1	1.96 TeV, 5.4 fb-1
Channels	l+jets	l+jets, dilepton
Results	matrix element method variable $\cos\theta^*$ $f_{0} = 0.726 \pm 0.066(\text{stat}) \pm 0.067(\text{syst}),$ $f_{+} = -0.045 \pm 0.044(\text{stat}) \pm 0.058(\text{syst}),$	template method variable $\cos\theta^*$ 120 1000 1000 1000 1000 1000 1000 1000 1000 10000

consistent with the SM expectations

latest W-helicity measurements

Combination ATLAS&CMS @ 7 TeV

ATLAS-CONF-2013-033 CMS PAS TOP-12-025

new physics parameterized as effective Lagrangian

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}\left(V_{\rm L}P_{\rm L} + V_{\rm R}P_{\rm R}\right)t W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}\left(g_{\rm L}P_{\rm L} + g_{\rm R}P_{\rm R}\right)t W_{\mu}^{-} + \text{h.c.}$$

02/10/2014

latest W-helicity measurements

CMS	CMS
	JHEP 10 (2013) 167
√s, lumi	7 TeV , (full dataset) 5.0 fb-1
Channels	l+jets
Results (2D , 3D fit)	$F_0 = 0.682 \pm 0.030(stat.) \pm 0.033(syst.)$ $F_L = 0.310 \pm 0.022(stat.) \pm 0.022(syst.)$ $F_R = 0.008 \pm 0.012(stat.) \pm 0.014(syst.)$

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

	CMS		
	CMS PAS TOP-13-008		
√s, lumi 8 TeV , (full dataset) 19.6 fb-1			
Channels	μ+jets		
Results (3D fit)	$F_0 = 0.659 \pm 0.015(stat.) \pm 0.023(syst.)$ $F_L = 0.350 \pm 0.010(stat.) \pm 0.024(syst.)$ $F_R = -0.009 \pm 0.006(stat.) \pm 0.020(syst.)$		

consistent with the SM expectations

02/10/2014

Summary R and V_{tb} measurements

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

(*) assuming unitarity of the three generation CKM matrix

(**) assuming $|V_{tb}| \le 1$

	CDF	Phys. Rev. Lett. 112, 221801	1.96 TeV, (full dataset) 8.7 fb-1 dilepton	R = 0.87 ± 0.07 V _{tb} = 0.93 ± 0.04 (*) V _{tb} > 0.85(0.87) at 95%(90%) CL
		Phys. Rev. D 87, 111101(R)	1.96 TeV, (full dataset) 8.7 fb-1 l+jets	R=0.94 ± 0.09 Vtb = 0.97 ± 0.05 (*) Vtb > 0.89 at 95% CL
D	Ø	Phys. Rev. Lett. 107, 121802	1.96 TeV, 5.4 fb-1 I+jets and dilepton	R = 0.90±0.04 Vtb = 0.95 ± 0.02 (*) Vtb > 0.96 at 95% CL
	MS	PLB 736 (2014) 33	8 TeV, (full dataset) 19.6 fb-1 dilepton	R = 1.014 ± 0.003 (stat) ± 0.032 (syst) V _{tb} = 1.007 ± 0.016 (*) V _{tb} > 0.975 at 95% CL (**)

most precise to date!

Inclusive top pair cross section at the Tevatron/LHC -E. Shabalina, J. Brochero Cifuentes

Summary R and V_{tb} measurements

$$R = \frac{B(t \to Wb)}{B(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

(*) assuming unitarity of the three generation CKM matrix

(**) assuming $|V_{tb}| \le 1$

02/10/2014

- ttγ cross section measurement:
 - \blacktriangleright direct probe of V-A and A coupling of the $t\bar{t}\gamma$ vertex
 - direct probe of EM coupling (top charge)
- γ can be radiated from:
 - ▶ top (pp→ tt̄γ)

the only processes in pp/pp̄ collisions with access to the tt̄γ vertex!

▶ top decay products (t→Wbγ (on-shell decay) or W decay chain)

Non-negligible interference effects taken into account!

ttγ previous measurements

		ATLAS		
	Phys. Rev. D 84, 031104(R)	ATLAS-CONF-2011-153		
√s, lumi	1.96 TeV, 6.0 fb-1	7 TeV, 1.04 fb-1		
Results	σ(tīγ) = 0.18±0.07 (stat) ±0.04 (sys) ±0.01 (lum) pl (with p _T (γ) > 10 GeV) Observed significance 3σ NLO prediction = 0.17 ± 0.03 pb	$\sigma(t\bar{t}\gamma) * BR = 2.0 \pm 0.5 (stat) \pm 0.7 (syst) \pm 0.08 (lumi) pb$ (with p _T (γ) > 8 GeV) Observed significance 2.7σ (expected 3.0σ) NLO prediction = 2.1 ± 0.4 pb		
	selection t̄tγ: 1 high-p⊤ lepton, a central photon with p⊤>10 GeV, Etmiss, large HT,	<u>"standard I+jets" selection</u> <u>+ additional selection tīy:</u> ≥1 good photon with p _T >15 GeV, m(eγ) - m(Z) > 5 GeV <u>Analysis strategy</u> : template fit method <u>discriminating variable</u> : track isolation pTcone20 distributions templates for prompt photons and hadron fakes from data		
	Analysis strategy: counting experiment			
ttγ sample:Main background contribution: hadron fakesttγMadGraph+PythiaDominant systematic uncertainty: photon identification efficiencyPT(Y)				
CE EVDENCE EVDENCE EVDENCE	σ(tᠯγ) measurement <mark>statistically</mark> limited!	σ(t̄tγ) measurement systematics-dominated!		

02/10/2014

EN

ttγ previous measurements

	CDF	ATLAS ATLAS
	Phys. Rev. D 84, 031104(R)	ATLAS-CONF-2011-153
√s, lumi	1.96 TeV, 6.0 fb-1	7 TeV, 1.04 fb-1
Results	σ(tᠯγ) = 0.18±0.07 (stat) ±0.04 (sys) ±0.01 (lum) pb (with p _T (γ) > 10 GeV) Observed significance 3σ NLO prediction = 0.17 ± 0.03 pb	$\sigma(t\bar{t}\gamma) * BR = 2.0 \pm 0.5 (stat) \pm 0.7 (syst) \pm 0.08 (lumi) pb$ (with $p_T(\gamma) > 8 \text{ GeV}$) Observed significance 2.7 σ (expected 3.0 σ) NLO prediction = 2.1 ± 0.4 pb

02/10/2014

Measurement ttγ @ 8 TeV

	CMS
	CMS-PAS-TOP-13-011
√s, lumi	8 TeV, 19.7 fb-1
Channels	μ+jets

Additional selection t \bar{t} γ: ≥1 good central photon with ET>25 GeV ΔR (photon, muon/jet) > 0.7

Analysis strategy: template fit method

discriminating variable: charged hadron isolation of photon candidate distribution templates for signal photons from simulation, background from data

Dominant systematic uncertainty: background modelling (23%)

02/10/2014

M

- ttZ and ttW
- ▶ tt̄Z process: FSR processes would allow us to measure the weak isospin of the top
 - but it can also arise from ISR processes
 - or Z radiated from the top quark decay products
 - → cross-section of tt̄Z production sensitive to anomalous couplings!
- ttw process: ISR process
- - → both processes are important to be measured!

 $\gamma^{\mu}(C_V^{SM} - \gamma_5 C_A^{SM})$ $C_V^{SM} = T^3 - 2Q_t \sin^2(\theta_W) \qquad C_A^{SM} = T^3$

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Truth ttV channels: 21, 31 and 41

ATLAS: simulation (top and tt p_T corrected)

02/10/2014

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Truth ttV channels: 21, 31 and 41

02/10/2014

Tamara Vázquez Schröder

17

Truth ttV channels: 21, 31 and 41

02/10/2014

Truth ttV channels: 21, 31 and 41

02/10/2014

Truth ttV channels: 21, 31 and 41

02/10/2014

Truth ttV channels: 21, 31 and 41

02/10/2014

Truth ttV channels: 21, 31 and 41

02/10/2014

Measurements/Searches at 7 TeV

Measurements/Searches at 8 TeV

		CMS	Top pair associated production in lowest order $1000 - t\bar{t}Z$
	ATLAS-CONF-2014-038	Eur. Phys. J. C74 (2014) 3060	500 arXiv:1309.1947 [hep-ex]
√s, lumi	8 TeV, 20.3 fb-1	8 TeV, 19.5 fb-1	
Channels	trilepton + same-sign μμ + opposite-sign dilepton	trilepton + same-sign dilepton + four lepton	50

compare channels in detail!

02/10/2014

Trilepton channel

ATLAS-CONF-2014-038

Eur. Phys. J. C74 (2014) 3060

	3IZ	3lZveto	3IZ	
Z-mass window cut (SF and OS)	< 10 GeV	> 10 GeV	< 10 GeV	
	p⊤ > 15 GeV (excep	t leading p⊤> 25 GeV)	p⊤ > 20 GeV	
Leptons	3rd leading electron p⊤> 20 GeV p⊤>25 GeV		relative iso < 0.09 (0.10) for electrons (muons)	
Jets	Jets p⊤ > 25 GeV		≥ 3 jets with p⊤ > 30 GeV 4th jet p⊤ > 15 GeV	
Btagging	Btagging 70% WP		≥ 1 medium btagged-jet (70% WP) and ≥ 1 loose btagged-jet (85% WP)	
Signal	tīz dominated	tŦW dominated	tīZ dominated	
Main background	tZ, WZ, fakes	tītZ, tītH, fakes	tZ, WZ, fakes	
Fit channels (Signal Region)	4jin, 1bjex (SRB1J4) 3jex, 2bjin (SRB2J3) 4jin, 2bjin (SRB2J4)	2jex+3jex, 2bjin (SRW3I)	4jin, 2bjin	

Trilepton channel

02/10/2014

Same-sign dilepton channel

CMS

Eur. Phys. J. C74 (2014) 3060

2| SS 2μ Lepton channels ee, eμ, μμ μμ (same charge) split into charge (# ttW+ > #ttW-) HT > 240 GeV **Additional cuts** HT > 155 GeV ETmiss > 40 GeV p⊤ > 40 GeV including events with 3 leptons passing the Leptons p⊤ > 25 GeV Z-boson veto (15 GeV) Jets p_T > 25 GeV p⊤ > 30 GeV 70% WP 70% WP Btagging ttW dominated ttW dominated Signal Main background lepton misidentification lepton and charge misidentification Fit channels 2bjin, 2jin 3jin, 1bjin (Signal Region) (SR2µSS) (6 SR: charge and flavour leptons)

Same-sign dilepton channel

significance obs (exp) 2ISS:

tŧW:1.6(2.0)

02/10/2014

Additional channels

ATLAS-CONF-2014-038

Opposite-sign dilepton channel

	2lOSZveto	2lOSZ		
Lepton channels (opposite charge)	ee, eμ, μμ	ee and μμ		
Z-mass window	> 10 GeV	< 10 GeV		
Additional cuts	HT > 130 GeV (eμ) ETmiss > 40 GeV (ee, μμ) ΔR(jj)ave > c ΔR(jj)ave > 0.75			
Leptons	leading lepton pT > 25 GeV second leading pT > 15 GeV			
Jets	pT > 25 GeV			
Btagging	70% W	/P		
Signal	mix of tt̄Z and tt̄W	tīZ dominated		
Main background	tī+jets	Z+jets		
Fit channels (<mark>Signal Region,</mark> Control Region)	3jex, 1+2bjex 4jex, 1+2bjex 5jin, 1+2bjex	3jex, 2bjex 4jex, 2bjex <mark>5jin, 2bjex</mark>		

Eur. Phys. J. C74 (2014) 3060

Four lepton channel

	41		
Z-mass window	2 OS SF leptons: <15 GeV other 2 leptons NOT SF with Z- window <15 GeV		
Leptons	leading lepton pT>20 GeV others pT> 10 GeV		
Jets	pT > 30 GeV		
Btagging	≥ 1 medium btagged-jet (70% WP) and ≥ 1 loose btagged-jet (85% WP)		
Signal	tīZ dominated		
Main background	ZZ, misidentified leptons		
Fit channels (Signal Region)	2bjex (1 tight + 1 loose) 1bjex (1 tight + no loose)		

02/10/2014

02/10/2014

Results 8 TeV

Combine 11 channels ATLAS-CONF-2014-038

[binned profile likelihood fit]

Combine 9 channels Eur. Phys. J. C74 (2014) 3060

		observed µ	observed	expected	Channels used	Process	Cross section	Significance
1 POI	tĪW	1.25 + 0.57 - 0.48	3.1	2.4	2ℓ	tĪW	$170^{+90}_{-80} ext{(stat)}\pm70 ext{(syst)} ext{fb}$	1.6
	tīZ	0.73 + 0.29 - 0.26	3.2	3.8	3ℓ + 4ℓ	tīZ	$200^{+80}_{-70}({ m stat})^{+40}_{-30}({ m syst}){ m fb}$	3.1
	tīV=tīZ+tīW	0.89 + 0.23 - 0.22	4.9	4.9	2ℓ + 3ℓ + 4ℓ	$t\bar{t}W+t\bar{t}Z$	380^{+100}_{-90} (stat) $^{+80}_{-70}$ (syst) fb	3.7

[2] M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi, JHEP11(2012)056.

02/10/2014

 \sim 20 years after discovery of the top, we start to have enough top pairs to explore the top+ $\gamma/Z/W$ couplings (via production rate / top decay Wtb vertex)

```
Evidence for tt̄Z and tt̄W at √s=8 TeV !
```

Wtb coupling via precision tt/single top measurements

No deviations from the SM predictions with current precision

Conclusions

Backup

02/10/2014

W-helicity

consistent with the SM expectations

W-helicity

To account for these effects a reweighting technique is applied, with a weight function $W(\cos \theta_{rec}^*; \vec{F})$ defined as:

$$W(\cos\theta_{gen}^*;\vec{F}) = \frac{\frac{3}{8}F_L(1-\cos\theta_{gen}^*)^2 + \frac{3}{4}F_0\sin^2\theta_{gen}^* + \frac{3}{8}F_R(1+\cos\theta_{gen}^*)^2}{\frac{3}{8}F_L^{SM}(1-\cos\theta_{gen}^*)^2 + \frac{3}{4}F_0^{SM}\sin^2\theta_{gen}^* + \frac{3}{8}F_R^{SM}(1+\cos\theta_{gen}^*)^2}$$
(2)

where $F_{L,R,0}^{SM}$ are the SM helicity fractions and $F_{L,R,0}$ are the helicity fractions which are to be measured, and $\cos \theta_{gen}^*$ is the angular distribution at the generator level.

The $\cos \theta_{rec}^*$ distribution at the reconstructed level can be obtained :

$$\rho(\cos\theta_{rec}^*) = \frac{1}{N} \frac{dN}{d\cos\theta_{rec}^*} = \int R(\cos\theta_{rec}^*, \cos\theta_{gen}^*) W(\cos\theta_{gen}^*) \rho^{SM}(\cos\theta_{gen}^*) d\cos\theta_{gen}^*$$
(3)

where $R(\cos \theta_{rec}^*, \cos \theta_{gen}^*)$ is the response matrix relating the generator level angular distribution $(\cos \theta_{gen}^*)$ to the reconstructed level angular distribution $(\cos \theta_{rec}^*)$. The response matrix

02/10/2014

W-helicity

	СМЅ
	JHEP 10 (2013) 167
√s, lumi	7 TeV , (full dataset) 5.0 fb-1
Channels	l+jets

- Reweighting method
- Variable cosθ*
- 3D fit (Signal normalisation F_{tt}, F_o, F_L):

$$\mathcal{L}(\vec{F}) = \prod_{bin \ i} \frac{N_{MC}(i;\vec{F})^{N_{data}(i)}}{(N_{data}(i))!} exp(-N_{MC}(i;\vec{F}))$$

$$\begin{split} N_{MC}(i;\vec{F}) &= N_{t\bar{t}}(i;\vec{F}) + N_{BKG}(i) \\ N_{t\bar{t}}(i;\vec{F}) &= \mathcal{F}_{t\bar{t}}[\sum_{t\bar{t} \text{ events,bin } i} W(\cos\theta_{gen}^*;\vec{F})] \\ N_{BKG}(i) &= N_{DY}(i) + N_{W+jets}(i) + N_{di-bosons}(i) + N_{single \ top}(i) \end{split}$$

Systematic Source	$\pm \Delta F_L$	$\pm \Delta F_0$
Top QScale	0.027	0.051
Top Mass	0.016	0.003
WZ QScale	0.013	0.026
DY normalization	0.009	0.014
W normalization	0.000	0.002
SingleTopTW normalization	0.002	0.008
JES	0.010	0.006
Pile-up	0.014	0.017
PDF	0.004	0.005
Total	0.040	0.063

Table 2: Summary of the systematic uncertainties for combined channels.

02/10/2014

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

	CMS
	CMS PAS TOP-13-008
√s, lumi	8 TeV, (full dataset) 19.6 fb-1
Channels	μ+jets

Reweighting method

- Variable cosθ*
- 3D fit (Signal normalisation F_{tt}, F_o, F_L):

Systematics	$\pm \Delta F_0$	$\pm \Delta F_L$
JES	0.002	< 0.001
JER	0.004	0.003
Lepton eff.	0.001	< 0.001
b-tag eff.	0.001	< 0.001
Pileup	< 0.001	0.001
Single-t bkg.	0.002	< 0.001
DY+jets bkg.	0.001	< 0.001
W+jets bkg.	0.009	< 0.001
MC statistics	0.003	0.002
Top-quark mass	0.012	0.008
tt scales	0.012	0.012
tī match. scale	0.012	0.008
tt $p_{\rm T}$ reweig.	0.001	< 0.001
$E_{\rm T}^{\rm miss}$ shape	0.004	0.018
Total syst.	0.023	0.024

02/10/2014

Single Top Vtb (2)

From Nadjieh's talk

 $|\mathbf{V_{tb}}|$: 1.03 ± 0.12(exp.) ± 0.04(th.) $(|V_{tb}| \gg |V_{ts}|, |V_{td}|)$

Constrained $|V_{tb}| < 1$: $|V_{tb}| > 0.78$ @95% C.L.

Phys. Rev. Lett. 112 8 TeV, 12.2 fb⁻¹

With $|V_{tb}| \gg |V_{ts}|, |V_{td}|$: $|f_V^L V_{tb}|$: 1.10 ± 0.12(exp.) ± 0.03(th.)

Constrained $|f_V^L| = 1$: $|V_{tb}| > 0.72$ @95% C.L.

• $|f_V^L V_{tb}|$: 1.06 ± 0.11 IO.4 % • Constrained $|f_V^L| = 1$ & $|V_{tb}| \le 1$: $|V_{tb}| \ge 0.79$ @95% C.L.

LHC combined (Sep. 2014) ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009 ATLAS-CONF-2013-100

8 TeV, 20.3 fb⁻¹

COMBINATION 8 TeV

Single Top Vtb (3)

From Manfredi's talk

IV_{tb}I > 0.84 at 95% C.L.

IV_{tb}I > 0.92 at 95% CL

CDF note 110

DØ PLB 726, 656 (2013)

t+s channel combination

Tevatron combination

IV_{tb}I > 0.92 at 95% C.L.

$$|V_{tb}| = 1.02 + 0.06 - 0.05$$
 5.3 %

Fermilab-CONF-14-370-E

02/10/2014

GEORG-AUGUST-UNIVERSITÄT

Measurements ttγ @ 8 TeV

	CMS
	CMS-PAS-TOP-13-011
√s, lumi	8 TeV, 19.7 fb-1
Channels	μ+jets

Selection

preselection: 1 isolated central muon with pT > 26 GeV ≥4 jets with pT > 55, 45, 35, 20 GeV (≥1 b-tagged jet) veto on extra leptons Additional selection tty: ≥1 good central photon with ET>25 GeV ΔR (photon, muon/jet) > 0.7

Some observables used in the photon selection

Measurements ttγ @ 8 TeV

	СМЅ	
	CMS-PAS-TOP-13-011	
√s, lumi	8 TeV, 19.7 fb-1	
Channels	μ+jets	

Selection

preselection: 1 isolated central muon with pT > 26 GeV \geq 4 jets with pT > 55, 45, 35, 20 GeV (\geq 1 b-tagged jet) veto on extra leptons **Additional selection tty:** \geq 1 good central photon with ET>25 GeV Δ R (photon, muon/jet) > 0.7

$$R \equiv \frac{\sigma_{t\bar{t}+\gamma}}{1} \cdot \frac{1}{\sigma_{t\bar{t}}} \equiv \frac{R^{\text{vis}}}{\epsilon_{\gamma}^{\text{vis}}} = \frac{N_{t\bar{t}+\gamma}^{\text{sig}}}{\epsilon_{\gamma}^{\text{vis}} \epsilon_{\gamma}} \cdot \frac{1}{N^{\text{presel}} \pi_{t\bar{t}}}, \qquad \pi_{t\bar{t}} = N_{t\bar{t}}^{\text{presel}} / N^{\text{presel}} = 84.3\%,$$

$$\epsilon_{\gamma} = N_{t\bar{t}+\gamma}^{\text{vis}} / N_{t\bar{t}+\gamma}^{\text{presel}} = 80.6\%,$$

ttZ and ttW @ 7 TeV

Measurements/Searches at 7 TeV

02/10/2014

Trilepton channel

Simulation

- Irreducible component: tqZ+tWZ (20% unc), ttH (12% unc)
- WZ (Sherpa with massive b,c quarks)
 - Validated in CRWZ: $m_T(W) > 50 \text{ GeV}$
 - Uncertainty: 20% + 10% (3j→4j) + 40% (2b)

Data driven

- Misidentified-lepton component (30% uncertainty)
 - Control sample: relaxed lepton selection
 - Efficiencies for real and fake leptons: events with 2 leptons and 1 btagged jet

Simulation

• Irreducible component: tbZ, ttH, ttW (50% unc)

Data driven

- Non-top quark component: WZ dominated (50% unc)
 - Correction of 1.4 to WZ+HF from differences wrt Z+jets CR
- Misidentified-lepton component (main source: tt) (50% unc)
 - Control sample: looser lepton requirements
 - Weight events by the "tight-to-loose" ratio (p_T and η dependent)

02/10/2014

Measurements ttZ and ttW @ 8 TeV

Same-sign dilepton channel

Simulation

- WZ, tZ, tĪZ
- Irreducible component: tt
 H, like-sign WW

Data driven

- Misidentified-lepton component
 - similar to trilepton channel
- Mismeasured-charge component
 - Negligible

significance obs (exp) 3l+2µSS: tīZ : 2.8 (3.4) tīW : 3.0 (2.3)

CMS

Data driven

- *Misidentified-lepton component* (main source: tt and W+jets)
 - similar to trilepton channel
- Mismeasured-charge component 30 (15) % unc. for ee (eµ)
 - fail same-sign requirement
 - weighting events by pT- and η-dependent probability for electron charge misassignment

02/10/2014

Measurements ttZ and ttW @ 8 TeV

Opposite-sign dilepton channel

- tī+jets (tī and top pT correction)
- Z+jets (p_T(Z)-shape and Z+HF normalisation correction)

	1+2bjex	2bjex	
зjex	normalisation	НТј	CONTROL REGION
4jex	NN	НТј	SIGNAL REGION
5jin	NN	NN	

Four lepton channel

Simulation

• ZZ (validated in ZZ-dominated region in data)

Data driven

- Misidentified-lepton component
 - "track-to-lepton" ratio from 2 CRs with different HF content
 - define 2 sideband regions with 3 leptons in the two btagging categorisations
 - # background events in signal region = sideband region * "track-to-lepton" ratio

02/10/2014

Systematic uncertainties

	Combination		
Uncertainty	$\mu_{t\overline{t}Z}$	$\mu_{t\bar{t}W}$	
Detector	0.07	0.13	
Background from simulation	0.08	0.09	
MisID lepton	0.03	0.09	
Signal modelling	< 0.01	< 0.01	
Total systematics	0.10	0.24	
Statistics	+0.26-0.24	+0.49-0.43	
Total	+0.29-0.26	+0.57-0.48	

	Channels		els
	2\ell	3ℓ	4ℓ
Source of uncertainty	Uncertainty (%)		
Modelling of trigger eff.	3	1	1
Modelling of lepton sel. (ID/isolation)	4	6	8
Jet energy scale and resolution	4	5	4
Identification of b jets	2	3	3
Pileup modelling	1	1	1
Choice of parton distribution functions	1.5	1.5	1.5
Signal model	5	5	5
Total	8	10	11