Experimental Results in the Boosted Regime

DISCLAIMER

this talk is about techniques and analysis strategies, not about the final result plot

Johannes Erdmann

TU Dortmund University

prepared with the help of Emanuele Usai on behalf of the ATLAS and CMS Collaborations

Top 2014, Cannes related presentations: Carmen Diez Pardos (4) Emanuele Usai (8) Till Eifert (11) Florencia Canelli (11')

Outline

- continuous transition
 resolved → high boost
- non-trivial analysis optimization
- run I :
 - few purely boosted analyses
 - typical scenario (RunI) :
 - top ID for high boost
 - W ID for low boost
 - complementary resolved analysis

Organized by final states

- (1) fully hadronic [stop, $t\bar{t}$ and tb and tH resonances]
- (2) \geq I lepton [VLQ b', stop, VLQ T, tt resonances, diff. Xsec, T_{5/3}]

Outline

Models for searches

- Searches for stop quarks
 - low mass top partners favored in various flavors of SUSY
- Searches for vector-like quarks (VLQ)
 - excellent candidates for heavy non-chiral top partners
- Searches for tt and tb resonances
 searches for narrow resonances

All-Hadronic Final States

resolved

low boost

Stop Pair Production (all-hadronic)

- $m_{ ilde{t}} m_{
 m LSP}$ defines boost
- only low boost ($m_{\tilde{t}}$ ~ O(few 100 GeV))
- resolved selections : 6jets/5jets, 2 b-tags, ET^{miss}

- recluster jets to top jets (R=1.2) and W jets (R=0.8)
- make use of jet masses for loose tagging

• also use top jet mass asymmetry

to distinguish topologies

(asymmetric \rightarrow only Ist top, > E_T^{miss})

Johannes Erdmann

Low boost -> Loose mass requirements

full 8 TeV

Low boost \rightarrow partial reco. for 2nd top

 $T\bar{T} \to tH\bar{t}H$

 \rightarrow jets

tH Resonances (all-hadronic)

- moderate boost given high-mass final state
- preselection : \geq 2 C/A R=1.5 jets, p_T > 150 GeV
- ≥ I top candidate : HTT-tag + ≥ I b-tagged subjet
- ≥ I Higgs candidate : Higgs-tag
 - 2 subjet b-tags and m_{bb} > 60 GeV

full 8 TeV

multi-Higgs category

CMS Preliminary, 19.7 fb⁻¹ at $\sqrt{s} = 8$ TeV **CMS Simulation Preliminary** Events/GeV Data Events • QCD from data QCD(MC) QCD (from data) 10⁶ tŦ 3.5 (inverted tagging) →tHtH (500 GeV) 10⁵ TT→tHtH(1000GeV) 3 TT→tHtH (700 GeV) x10 TT→tHtH(700GeV) TT→tHtH (1 TeV) x100 2.5 • tt from MC 10^{4} TT→tHtH(500GeV) 2 10³ 1.5 10² categorized in 0.5 10 DATA / BG #Higgs-tags 1.5 1 10⁻¹ final discriminant 0.5 2 3 5 0 4 6 7 8 uses H_T and m_{bb} n 50 200 250 300 100 n top-tags + b-tagged subjet mass of Higgs candidate (GeV) CMS PAS B2G-14-002

top- + b- + Higgs-tagging against QCD

Johannes Erdmann

7

Johannes Erdmann

tagger choice pr dependent

 $X \to t\bar{t}$

 \rightarrow jets

ttbar Resonances (all-hadronic)

- fully boosted analysis
- complemented by I+jets analyses (resolved and boosted)

full 8 TeV

Johannes Erdmann

tight top-tagging against QCD

 \rightarrow jets

tb Resonances (all-hadronic)

- W'
 ightarrow tb fully boosted analysis
 - I trimmed anti-k_t I.0 jet with $p_T > 350$ GeV, and substructure-tag (split. scale $\sqrt{d_{12}}$ & N-subjettiness T_{21} , T_{32})
 - I anti-k_t 0.4 jet with $p_T > 350$ GeV and b-tagged
 - $m_{tb} > 1100 \text{ GeV} \rightarrow \text{only high boosts}$
 - difference in tagging efficiency from W' handedness

Process	One <i>b</i> -tag		Two b-tag
Multijet	$16100 \pm$	800	2600 ± 300
Hadronic tī	$130\pm$	30	210 ± 60
Leptonic tī	60 ± 2	20	90 ± 30
Other	60 ± 60		8 ± 8
Total SM prediction	16400 ± 800		2900 ± 300
Data	16601		2925
 2 #b-tag categor 	ries		
for large-R jet			ugust ?1/
• total bkg. from data fit			lugust 14
		arX	(iv:1408.088
		<u></u>	

Johannes Erdmann

suppress QCD with classical substructure

10

full 8 TeV

tb Resonances (all-hadronic)

tb Resonances (all-hadronic)

tb Resonances (all-hadronic)

21 Lepton Final States

Stop Pair Production (I lepton)

 $b'\overline{b}'$

VLQ Searches (\geq 1 lepton)

- pruned C/A 0.8V-tag (m \in [50,150]GeV, mass drop)
- categorize in boson tags <u>CMS_PAS_B2G-12-019</u>

full 8 TeV

$$T\overline{T}$$

$$T \to bW$$

$$T \to tZ$$

$$T \to tH$$

 $b' \to tW$

 $b' \to bZ$

 $b' \to bH$

resolved and partially boosted selection

- I e/μ + 3 high-pT jets, E_T^{miss}
- C/A 0.8 jet, p_T > 200 GeV, m ∈ [60, 130] GeV
- BDT inputs : #W-tags, #top-tags <u>PLB 729 (2014) 149</u>
- same-sign lepton search $T_{5/3}T_{5/3} \to tWtW$
 - top ID : R=0.8 CMS top-tagger ($p_T > 400$ GeV)
 - WID : R=0.8 (pruned) 2 subjets + W mass
 - jet ID : R=0.5, away from top or W ID-ed jets
 - use #top-tags, #W-tags, #jets

PRL 112 (2014) 171801

Johannes Erdmann

using W-tagging to reject background

Johannes Erdmann

 $l+jets \rightarrow mini-isolation + loose tagging$

high boost

 $t\bar{t} \rightarrow \ell + jets$

Boosted Differential Cross Section

- aim : measure p_T of hadronic top candidate
 - recover high pT efficiency with boosted techniques
- this is a background for most searches presented here !
- same selection as I+jets $t\overline{t}$ resonance search
- MC fails to model high pT regime well

Johannes Erdmann

 $l+jets \rightarrow mini-isolation + loose tagging$

Pushing the TeV Scale

CMS Searches for New Physics Beyond Two Generations (B2G)

95% CL Exclusions (TeV)

45 5

4

Pushing the TeV Scale

	rusning the lev stale	
	ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)	
Lorge ED (ADD) - mensiol + E		п 🦷 🕻
Large ED (ADD) : monophoton + E	L=4.7 fb ⁻¹ , 7 TeV [1210.4491] 4.37 TeV [1210.4491	
2 Large ED (ADD) : diphoton & dilepton. m	4.18 TeV (1211.1159) ATLAS	
UED : diphoton + $E_{T_{rotat}}$	L=4.8 fb ⁻¹ , 7 TeV (1209.0753) 1.40 TeV Compact, scale R ⁻¹ Preliminary	
S ¹ /Z, ED : dilepton, m	L=5.0 fb ⁻¹ , 7 TeV [1209.2535] 4.71 TeV M _{KK} ~ R ⁻¹	
RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017] 2.47 TeV Graviton mass (k/M _{PI} = 0.1)	
RS1 : WW resonance, m _{T,MN}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880] 1.23 TeV Graviton mass (k/M _{Pl} = 0.1)	
Bulk RS : ZZ resonance, m	$L=7.2 \text{ fb}^{-1}, 8 \text{ Tev [ATLAS-CONF-2012-150]} 850 \text{ Gev} \text{ Graviton mass } (k/M_{p_1} = 1.0) Ldt = (1-20) \text{ fb}^{-1}$	
\neq ttbar RS g _{KK} \rightarrow tt (BR=0.925) : tt \rightarrow I+jets, m	L=4.7 fb ⁻¹ , 7 TeV [1305.2756] 2.07 TeV g _{RX} mass	
$(II) ADD BH (M_{TH}/M_D=3) : 55 dimuon, N_{ch, part.}$	L=1.3 fb ⁻ , 7 TeV [1111.0080] 1.25 TeV M _D (0=6)	
Quantum black hole : dijet $F(m_1)$	L=1.0 fb ⁻¹ , 7 TeV [1204.4645] 1.5 TeV M _D (0=0)	
gggg contact interaction : $\chi(m)$	4 = 4.8 (b ⁻¹ , 7 TeV (1210, 1718)	
αgll CI : ee & μμ, m	L=5.0 fb ⁻⁷ , 7 TeV [1211.1159] 13.9 TeV A (constructive int.)	
uutt CI : SS dilepton + jets + E	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051] 3.3 TeV A (C=1)	
Z' (SSM) : menu	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017] 2.86 TeV Z' mass	
Z' (SSM) : met	L=4.7 fb ⁻¹ , 7 TeV (1210.6604) 1.4 TeV Z ⁺ mass	
\downarrow ttbar Z' (leptophobic topcolor) : tt \rightarrow I+jets, m	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052] 1.8 TeV Z' mass	
W (SSM) : m _{Τ,0/μ}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446] 2.55 TeV W' mass	
$VV' (\rightarrow tq, g_{g}=1): m_{sq}$	L=4.7 fb ⁻¹ , 7 TeV [1209.5593] 430 GeV W' mass	W' _R → tb
$W_R (\rightarrow ID, LRSM) : m_B$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050] 1.84 TeV W' mass	(had) I 9 ToV
Scalar LQ pair (β =1) : kin. vars. in eejj, evjj Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828] 660 GeV 1 gen. LQ mass	(nau.): 1.0 Tev
Scalar LO pair $(\beta=1)$; kin, vars, in $\pi \pi i$ $\pi \tau i$	2 gen. EQ mass	
A th concration : ft' -> WbWb	L=4.7 (b ⁺ , 7 TeV [1210.5463] 656 GeV [¹ mass	
4th generation : b'b' \rightarrow SS dilepton + jets + E	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051] 720 GeV b ⁺ mass	
S Vector-like quark : TT→ Ht+X	L=14.3 fb ⁻¹ , 8 TeV (ATLAS-CONF-2013-018) 790 GeV T mass (isospin doublet)	
Vector-like quark : CC, mive	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137] 1.12 TeV VLQ mass (charge -1/3, coupling $\kappa_{qQ} = v/m_{Q}$)	
Excited quarks : γ -jet resonance, $m_{\gamma jet}$	L=2.1 fb ⁻¹ , 7 TeV [1112.3580] 2.46 TeV q* mass	
Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148] 3.84 TeV q* mass	
Excited b quark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583] 870 GeV b ⁺ mass (left-handed coupling)	
Tachai badrons // STC) : dilepton m	$\frac{1}{2.2 \text{ TeV}} = \frac{1}{10000000000000000000000000000000000$	
Techni-hadrons (LSTC) : WZ resonance (IvII), m	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	
Major neutr (LRSM, no mixing) : 2-len + jets	(1.5 TeV 1203 5420) (4=2.1 (b ⁺ , 7 TeV 1203 5420) (1.5 TeV N mass (m(W)) = 2 TeV)	
Heavy lepton N [±] (type III seesaw) : Z-I resonance. m ₂	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019] N ^z mass (V = 0.055, V = 0.063, V = 0)	
H ^{i±} (DY prod., BR(H ^{i±} →II)=1) : SS ee (μμ), m ⁱ	L=4.7 fb ⁻ , 7 TeV [1210.5070] 409 GeV H ^{±±} mass (limit at 398 GeV for μμ)	
Color octet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718] 1.86 TeV Scalar resonance mass	
Multi-charged particles (DY prod.) : highly ionizing tracks	1=4.4 fb ⁻¹ , 7 TeV [1301.5272] 490 GeV mass (q = 4e)	
Magnetic monopoles (DY prod.) : highly ionizing tracks	L=2.0 fb ⁺ , 7 TeV [1207.6418] 862 GeV mass	
	10" 1 10	
*Only a selection of the available mass limits on new states	Mass scale Te	√]

*Only a selection of the available mass limits on new states or phenomena shown

Johannes Erdmann

Excit. New LQ ferm. quarks

Summary

SHUTDOWN: NO BEAM

- Variety of analysis strategies developed in run 1
 - o different pr regimes
 - Largeling different backgrounds
 - optimized for different signals
- Exciting times ahead in run 2!
 - o boosted techniques will play a crucial role

high-mass searches + high-pt SM top + ttH + ???

	BIS status and	I SMP flags		B1	B2
Comments (16-Feb-2013 08:25:13)	Link Stat	tus of Beam Pe	rmits	false	false
*** END OF RUN 1 ***	Global Beam Permit		it 📕	false	false
No beaus few a while Assess year vived	Setup Beam Beam Presence			true	true
time estimate: ~2 years				false	false
time cotimate. 2 years	Moveable Devices Allowed In		ved In	false	false
	S	Stable Beams		false	false
AFS: Single_36b_4_16_16_4bpi9inj	PM Status B1	ENABLED	PM Status B2	EN	ABLED

Bonus

resolved

low boost

Stop Pair Production (all-hadronic)

- $m_{ ilde{t}} m_{
 m LSP}$ defines boost
- only low boost ($m_{\tilde{t}} \sim O(\text{few I00 GeV}))$
- resolved selections : 6jets/5jets, 2 b-tags, ET^{miss}

- recluster jets to top jets (R=1.2) and W jets (R=0.8)
- make use of jet masses for loose tagging

- also use top mass asymmetry
 - to distinguish topologies

(asymmetric \rightarrow only Ist top, > E_T^{miss})

partially boosted signal region

full 8 TeV

	SRB
Observed events	2
Total SM	2.4 ± 0.7
tī	$0.10 {}^{+ 0.14}_{- 0.10}$
$t\bar{t} + W/Z$	0.47 ± 0.17
Z + jets	1.23 ± 0.31
W + jets	0.49 ± 0.33
Single top	0.08 ± 0.06
Diboson	0.02 ± 0.01
Multijets	< 0.001

<u>JHEP 1409 (2014) 015</u>

Johannes Erdmann

Low boost \rightarrow loose mass requirements

resolved

low boost

Stop Pair Production (all-hadronic)

- $m_{ ilde{t}} m_{
 m LSP}$ defines boost
- only low boost ($m_{\tilde{t}}$ ~ O(few 100 GeV))
- resolved selections : 6jets/5jets, 2 b-tags, E^{miss}

- recluster jets to top jets (R=1.2) and W jets (R=0.8)
- make use of jet masses for loose tagging

• also use top jet mass asymmetry

to distinguish topologies

(asymmetric \rightarrow only Ist top, > E_T^{miss})

full 8 TeV

Stop Pair Production (all-hadronic)

$$\tilde{t}\tilde{t}^* \to \text{jets} + E_T^{\text{miss}}$$

 $\tilde{t} \to t + \text{LSP}$

resolved

low boost

$$\mathscr{A}_{m_t} = \frac{|m_{\text{jet},R=1.2}^0 - m_{\text{jet},R=1.2}^1|}{m_{\text{jet},R=1.2}^0 + m_{\text{jet},R=1.2}^1}.$$

full 8 TeV

Table 3. Selection criteria for SRB, the partially resolved topology, with four or five anti- $k_t R = 0.4$ jets, reclustered into anti- $k_t R = 1.2$ and R = 0.8 jets.

	SRB1	SRB2		
anti- $k_t R = 0.4$ jets	4 or 5, $p_{\rm T} > 80, 80, 35, 35, (35)$ GeV	5, $p_{\rm T} > 100, 100, 35, 35, 35$ GeV		
Am,	< 0.5	> 0.5		
$p_{\text{T,iet},R=1.2}^{0}$		> 350 GeV		
$m_{\text{jet},R=1.2}^0$	> 80 GeV	[140, 500] GeV		
$m_{\text{iet},R=1.2}^{\text{l}}$	[60, 200] GeV	-		
$m_{\text{jet},R=0.8}^0$	> 50 GeV	[70,300] GeV		
m _T min	> 175 GeV	> 125 GeV		
$m_{\rm T}$ (jet ³ , $p_{\rm T}^{\rm miss}$)	> 280 GeV for 4-jet case			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	-	$> 17\sqrt{\text{GeV}}$		
E ^{miss}	> 325 GeV	> 400 GeV		

JHEP 1409 (2014) 015

resolved

low boost

Stop Pair Production (all-hadronic)

$$\tilde{t}\tilde{t}^* \to \text{jets} + E_T^{\text{miss}}$$

 $\tilde{t} \to t + \text{LSP}$

- $m_{ ilde{t}} m_{
 m LSP}$ defines boost
- only low boost
- preselection : 5jets, I b-tag, E_T^{miss}

full 8 TeV

partially boosted selection :

- one "full top" : HEPTopTagger(HTT)-like 3-jet selection
 - $\Delta R < 1.5$, $m_{jjj} \in$ [80,270] GeV, HTT inv. mass cuts
- + one "partial top" :
 - 3 jets left : use m_{jjj} and m_{jj}
 - failing or just 2 jets : use m_{jj}
 - failing or just 1 jet : use remaining b-tagged jet
- kinematic requirements on full/partial tops
- #b-tags and ET^{miss} categories
- bkg. estimated using data-driven techniques

CMS PAS SUS-13-015

Johannes Erdmann

Low boost \rightarrow partial reco. for 2nd top

resolved

low boost

Stop Pair Production (all-hadronic)

full 8 TeV

- backgrounds :
 - W $\rightarrow \tau$ +X, $\tau \rightarrow$ had.
 - W $\rightarrow \mu \nu$ selection and replace μ by jet with p_T^{jet} / p_T^{τ} from MC
 - lost leptons (60% non-reco., 10% non-iso., 30% not in acceptance)
 - apply inefficiencies for reco. and iso.
 - $Z \rightarrow inv. + X$
 - Z \rightarrow dilep. + HF and add leptons to MET
 - QCD
 - low angle between jet and MET CR
 - extrapolate into SR

CMS PAS SUS-13-015

 $T\bar{T} \to tH\bar{t}H$

tH Resonances (all-hadronic)

Figure 12: Branching fraction triangle with expected limits (left) and observed limits (right) for the T quark mass. Every point in the triangle corresponds to a particular set of branching fraction values subject to the constraint that all three add up to one. The branching fraction for each mode decreases from one at the corner labelled with the decay mode to zero at the opposite side of the triangle.

CMS PAS B2G-14-002

low boost high boost

 $X \to t\bar{t}$

 \rightarrow jets

ttbar Resonances (all-hadronic)

- fully boosted analysis
- low boost (p_T>200 GeV) : HEPTopTagged-C/A 1.5 jets
- high boost, i.e. high mass resonances (p_T>500/450 GeV) : Template Overlap Method (anti-kt I.0) + pile-up corr. mass
- matched small-R b-tagged jet

Template Overlap Method

Johannes Erdmann

tagger choice pt dependent

full 7 TeV

Template Overlap Method

[hep-ph/1006.2035] [hep-ph/1112.1957]

low boost high boost

ttbar Resonances (all-hadronic)

Figure 9: Preliminary expected and observed limits, in logarithmic scale, for the narrow Z' hypothesis. The theory expectation is shown in the dashed curve, scaled by a factor of 1.3 to account for next-to-leading order effects.

PRL III (2013) 211804 CMS PAS B2G-12-005

full 8 TeV

tb Resonances (all-hadronic)

Fig. 4: m_{tb} distributions in data in the one *b*-tag (left) and the two *b*-tag category (right). Background-only fits are shown, and the bottom plots show the ratio of the data and the fit. The left plot shows an extrapolation of the background fit into the region 4 - 5 TeV. The ratio plot, however does not show the three data points in this range, because they are beyond the range considered for this analysis. Potential W'_L signal shapes in the hadronic top-quark decay channel with $g' = g_{SM}$ are also overlaid for resonance masses of 1.5, 2.0, 2.5 and 3.0 TeV.

<u>arXiv:1408.0886</u>

tb Resonances (all-hadronic)

Fig. 6: Limits at 95% CL on the cross section times branching ratio to tb for the left-handed (left) and for the right-handed (right) W' model. The expected cross section for W' production with $g' = g_{SM}$ is also shown.

Fig. 7: Observed and expected 95% CL limits on the ratio of coupling g'_L/g_{SM} (g'_R/g_{SM}) of the W'_L (W'_R) model as a function of the W' mass.

arXiv:1408.0886

tb Resonances (all-hadronic)

arXiv:1408.0886

Figure 7: A plot of the full selection comparing data, signal and background. The single top quark contribution is not considered when setting limits. The normalization for the signal samples is set to a cross-section of 0.2pb. Top and bottom plots are the same but with linear and log y-axis scale.

CMS PAS B2G-12-009

36

Johannes Erdmann

CMS tagging + T 32; high mass veto

high boost

 $W' \to tb$

 \rightarrow jets

Stop Pair Production (I lepton)

ATLAS
full 8 TeV

	tN_diag	tN_med	tN_high	tN_boost	
Preselection	Default preselection criteria, cf. table 3.				
Lepton	= 1 lepton				
Jets	≥ 4 with $p_{\rm T} >$	\geq 4 with $p_{\rm T}$ >	\geq 4 with $p_{ m T}$ >	≥ 4 with $p_{\mathrm{T}} >$	
	$60,60,40,25\mathrm{GeV}$	$80, 60, 40, 25{\rm GeV}$	$100, 80, 40, 25{\rm GeV}$	$75, 65, 40, 25{\rm GeV}$	
b-tagging	≥ 1 b-tag (70% eff.) amongst four selected jets				
large- R jet		-		$\geq 1, p_{\rm T} > 270 {\rm GeV}$	
				and $m > 75 \mathrm{GeV}$	
$\Delta \phi(\mathrm{jet}_2^{\mathrm{large-}R}, ec{p}_{\mathrm{T}}^{\mathrm{miss}})$		1.000		> 0.85	
$E_{ m T}^{ m miss}$	$> 100 \mathrm{GeV}$	$> 200 \mathrm{GeV}$	$> 320 {\rm GeV}$	$> 315 {\rm GeV}$	
mT	$> 60 \mathrm{GeV}$	$> 140 {\rm GeV}$	$> 200 {\rm GeV}$	$> 175 {\rm GeV}$	
am _{T2}	12	$> 170 {\rm GeV}$	$> 170 { m GeV}$	$> 145 \mathrm{GeV}$	
m_{T2}^{τ}	-	-	$> 120 { m GeV}$	-	
topness	-	-	-	> 7	
$m_{\rm had-top}$	$\in [130,205]\mathrm{GeV}$	\in [130, 195] GeV	\in [130, 250] GeV		
τ-veto	tight	-	-	modified, see text.	
$\Delta R(b ext{-jet}, \ell)$	< 2.5	-	< 3	< 2.6	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	$> 5 \text{ GeV}^{1/2}$				
$H_{ m T,sig}^{ m miss}$	-	>	12.5	> 10	
$\Delta \phi(\mathrm{jet}_i, ec{p}_\mathrm{T}^\mathrm{miss})$	> 0.8 ($i = 1, 2$)	$> 0.8 \ (i=2)$	-	> 0.5, 0.3 ($i = 1, 2$)	

Johannes Erdmann

l+jets + low boost → very loose tagging

 $b'\overline{b}'$

 $b' \to tW$

 $b' \to bZ$

 $b' \to bH$

VLQ b' Pair Production (I lepton)

- selection targeting all possible final states
 - \bullet one e or μ
 - \geq 4 high-p_T jets (anti-k_t 0.5), \geq 1 b-tagged, E_T^{miss}
 - pruned C/A 0.8 V-tag (m∈[50,150]GeV, mass drop)

full 8 TeV

categorize in boson tags

• most sensitive to tW final state (more taggable bosons)

•
$$S_{\mathrm{T}} = \sum_{\mathrm{T}} p_{\mathrm{T}}^{\mathrm{jet}} + p_{\mathrm{T}}^{\ell} + E_{\mathrm{T}}^{\mathrm{miss}}$$

anti- $k_t 0.5$

-					
-	Background process		kground process 0 V-tag		≥ 2 V-tags
	1:040	$t\overline{t}$	6400.5 ± 64.4	3001.8 ± 44.1	147.7 ± 9.8
μŦ	rjets	W+jets	932.2 ± 34.7	178.5 ± 11.7	25.9 ± 6.4
		Z+jets	179.5 ± 19.7	50.9 ± 10.5	8.0 ± 4.2
		Single top	471.8 ± 13.6	203.1 ± 9.2	7.6 ± 1.8
		$t\bar{t}V+jets$	46.8 ± 1.0	31.8 ± 0.8	3.9 ± 0.3
	Dibos	son (WW,WZ,ZZ)	24.3 ± 1.6	9.4 ± 1.0	0.7 ± 0.3
		Multijet	325.5 ± 2.8	176.2 ± 2.7	2.9 ± 0.1
-	To	tal background	8380.7 ± 77.0	3651.7 ± 47.8	196.6 ± 12.6
-		Data	8013	3473	209
-					

CMS PAS B2G-12-019

Johannes Erdmann

categorize in tight boson-tags

VLQ T_{2/3} Pair Production (\geq I lepton)

- $T\bar{T}$ $T \to bW$ $T \to tZ$ $T \to tH$
- multi-lepton and single lepton
- single lepton : resolved and partially boosted
 - one e/ μ + 3 jets with pT > 120/90/50 GeV, ET^{miss}

C/A 0.8 jet, p_T > 200 GeV, m ∈ [60, 130] GeV

- resolved : 4^{th} jet with $p_T > 35$ GeV
- partially boosted (tagged W) :

full 8 TeV

19.5 fb⁻¹ CMS $\sqrt{s} = 8 \text{ TeV}$ Events/bin 10^6 10^5 10^4 **BDT** inputs • Data $e + \ge 3$ jets $+ \ge 1$ W jet Background except tt • #W-jets tŦ Uncertainty • pT of W-jets 10^{3} TT 800 GeV (×100) # top-jets (CMS tagger) 10² 10 • # anti-kt 0.5 jets • # b-tags 10⁻¹ • H_T & E_T^{miss}, Pull • p_T of lepton 0.5 -0.5 -1 0 • p_T of third jet **BDT discriminant** PLB 729 (2014) 149

39

Johannes Erdmann W- and top-tagging as inputs to BDT

 $T_{5/3}T_{5/3} \to tWtW$

VLQ T_{5/3} (dilepton)

- same-sign lepton search
- top ID : R=0.8 CMS top-tagger (p_T > 400 GeV)
- W ID : R=0.8 (pruned) 2 subjets + W mass
- jet ID : R=0.5, away from top or W ID-ed jets

full 8 TeV

selection :

- $Z \rightarrow ||$ veto
- cover various boosted regimes by counting final state objects :

$$3 \cdot N_t + 2 \cdot N_W + N_{\text{jet}} + N_\ell \ge 7$$

• counting experiment in $H_T > 900 \text{ GeV}$

boosted techniques shown to improve limits

PRL 112 (2014) 171801

Johannes Erdmann

counting of final state objects