Boosted top: experimental tools overview

Emanuele Usai on behalf of the CMS and ATLAS collaborations prepared with the help of Johannes Erdmann

7th International Workshop on Top Quark Physics

Cannes, October 1st, 2014

Strategy

Boosted leptonic top

- lepton and b-jet very close
- classic jet isolation not optimal
- ► shrink the cone depending on the p_T of the lepton

Boosted hadronic top \rightarrow main topic of the talk

- cluster whole decay in a large radius jet
- use top taggers
- add jet substructure variables on top of it

Jet grooming

Large radius jets:

- collect lots of soft QCD radiation
- suppress it to resolve hard decay product
- use jet grooming algorithms to remove soft, wide angle radiation
- mass drop filtering, pruning, trimming

Trimming:

- k_t algorithm to cluster subjet of radius R_{sub}
- ► reject softer subjets using a p_T fraction requirement (p_{T,i}/p_{T,jet} < f)</p>

Top taggers

- start from Cambridge-Aachen R=0.8 jet
- adjacency: $\Delta R(A,B) > 0.4 0.004 \times \rho_T^{\text{input}}$, do not decluster if fails

- start from Cambridge-Aachen R=0.8 jet
- adjacency: $\Delta R(A,B) > 0.4 0.004 \times \rho_T^{\text{input}}$, do not decluster if fails
- softness: $p_T^{\text{subcluster}} > 0.05 \times p_T^{\text{jet}}$

- start from Cambridge-Aachen R=0.8 jet
- adjacency: $\Delta R(A,B) > 0.4 0.004 \times \rho_T^{\text{input}}$, do not decluster if fails
- softness: $p_T^{\text{subcluster}} > 0.05 \times p_T^{\text{jet}}$

- start from Cambridge-Aachen R=0.8 jet
- adjacency: $\Delta R(A,B) > 0.4 0.004 \times p_7^{\text{input}}$, do not decluster if fails
- softness: $p_T^{\text{subcluster}} > 0.05 \times p_T^{\text{jet}}$

Repeat the procedure separately on cluster A and B

CMS Top Tagger in data

Additional selection:

- ► N_{subjet} ≥ 3
- $m_{\min} = \min(m_{12}, m_{13}, m_{23}) > 50 \text{ GeV}$
- ▶ 140 < m_{jet} < 250 GeV</p>

Fully commissioned in CMS in a boosted semileptonic $t\bar{t}$ selection.

HEP Top Tagger in data

Fully commissioned in both ATLAS and CMS in a boosted semileptonic $t\bar{t}$ selection.

Tagger's efficiency drops at very high $p_T \rightarrow$ cone is too large \rightarrow new improved Multi-R HepTopTagger:

- run tagger on different cone sizes R (0.5-1.5)
- ▶ find optimal cone size: R_{min} = min(R'|abs(m_{jet}(R = R') - m_{jet}(R = 1.5)) < 0.2m_{jet}(R = 1.5))
- ► additionally use $R_{\min}(p_T) R_{\min, expected}(p_T)$ as tagging variable

Calibration and data driven corrections

- **CMS:** derive Data/MC eff. correction factor
- Tag&probe on $t\bar{t}$ semileptonic sample:
 - "tag" on leptonic side (iso μ , b-jet)
 - ''probe'' effic. on the hadr. side
- Scale factors derived as a function of:
 - ▶ p_T , η , generators

ATLAS: (arXiv:1306.4945)

HEP Tagger: calibrate subjets for different R

Large cone jets: validate jet mass scale using:

uncertainties

Shower deconstruction

- decluster small *microjets* (R=0.1-0.3) from a large cone jet
- assume each microjet (momentum p) comes from a particle (top decay products, ISR parton shower, etc.)
- derive probability a microjet configuration {p}_N comes from a particular decay chain (shower history)
- probability obtained by combining splitting probabilities from shower history
- define discriminator χ as S/B probability quotient

 $\chi(\{p\}_N) = \frac{P(\{p\}_N | \text{signal})}{P(\{p\}_N | \text{background})}$

Further jet substructure techniques

b-tagging in boosted topologies

b-tagging: essential tool against QCD

Algorithms use information from:

- tracks, esp. impact parameter (IP)
- secondary vertices (SV)

Combine information in a discriminator

- ATLAS MV1: neural network based
- CMS Combined Secondary Vertex (CSV): likelihood based

In boosted regime:

- small separation of decay products
- light flavor contamination
- busy environment
- degraded performance

b-tagging in boosted topologies - ATLAS

An improved tagger:

- add new variables with more discrimination power in boosted regimes (mean Δ*R*(trk,jet), 3rd highest d₀ significance)
- retrain NN with boosted $t\bar{t}$ decays
- new MVb 2× better than MV1 in the boosted regime

Use different input jets

- small-R jets: resolve better boosted decay products
- use track-jets instead of calo-jets: better jet direction resolution

b-tagging in boosted topologies - CMS

Two different approaches

- ► fat jet *b*-tag: apply CSV directly to fat jets (green and blue)
- subjet b-tag: apply CSV to subjets of fat jets (red and black)
- Several algorithm improvements (improved taggers in green and red)
 - Inclusive Vertex Finder (IVF)
 - use tracks linked to charged constituents of particle-flow jets (instead of fixed R cone) + other CSV improvements

subjet *b*-tagging in action in CMS (data)

CMS-PAS-BTV-13-001

N-subjettiness and k_t splitting scale

N-subjettiness τ_N (ATLAS+CMS):

- how well jets can be described as containing N or fewer k_t subjets
- ► $\tau_N = \frac{1}{d_0} \sum_k \rho_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\}$ *k*: constituent index, $d_0 = \sum_k \rho_{T,k} R_0$
- ► Roughly: *p*_T weighted average of minimum Δ*R*(constituent, subjet axis)/*R*_{jet}
- for tops τ_3/τ_2 and τ_2/τ_1 are relevant

k_t splitting scales (ATLAS):

- recluster jet constituents with k_t algorithm
- ► use last combined jets to define the splitting scale: √d_{i,j} = min(p_{Ti}, p_{Tj}) × ΔR_{i,j}
- ▶ $\sqrt{d_{1,2}}$ → last step, $\sqrt{d_{2,3}}$ → second to last

The semi-resolved case and W-tagging

Medium boost regime

- W and b can be clustered separately
- cluster hadronic W in a single jet (CA R=0.8 in CMS)
- use W-tagging

W-tagging

- benchmark topology for jet substructure studies
- treat large W jet with grooming techniques
- apply cut on pruned mass
- some analyses use cut on τ_2/τ_1

Pileup mitigation and other techniques

Pileup per particle identification (CMS)

(PUPPI, JME-14-001, arXiv:1407.6013)

- large-R jets collect lots of pileup
- assign weight to each particle based on:
 - event pileup properties
 - tracking information
- operates on the input of jet algos
- all jet substructure variables affected by it

ATLAS: Jet vertex tagger, "Jet Cleansing" (ATLAS-CONF-2014-018)

Jet reclustering (ATLAS)

- Consider the standard R=0.4 jets in an event
- use these jets as an input to recluster anti-k_t jets with larger R=0.8, 1.2
- use mass of the reclustered jets as tagging variable

Algorithm comparison

Performance in CMS, R = 1.5, $p_{T,match} > 200$ GeV

Performance in CMS, R = 1.5, $p_{T,match} > 200$ GeV

Performance in CMS, R = 1.5, $p_{T,match} > 200$ GeV

Performance in CMS, R = 0.8, $p_{T,match} > 600 \text{ GeV}$

Performance in CMS, R = 0.8, $p_{T,match} > 600 \text{ GeV}$

Performance in CMS, R = 0.8, $p_{T,match} > 600$ GeV

Performance in CMS, R = 0.8, $\rho_{T,match} > 600 \text{ GeV}$

- very active field: many new theoretical and experimental developments every year
- widely used in searches for physics beyond the SM: see next talk from Johannes Erdmann
- getting ready for Run II: pileup safety, study systematics

Thank you for the attention!

Backup

Large cone jet calibration (arXiv:1306.4945v1)

Performance comparison CMS

HEP tagger mass drop

Reclustering:

- Consider the standard R=0.4 jets in an event
- use these jets as an input to recluster anti-k_t jets with larger R=0.8, 1.2
- use kinematic variables of the reclustered jets to cut

Template tagger:

- Compare the energy flow for an event in data with the one from a big number of MC templates.
- from the coparisons compute a discriminator OV₃
- cut on OV_3 and on $|m m_{top}|$

Large radius jets:

- collect lots of soft QCD radiation
- suppress it to resolve hard decay product
- use jet grooming algorithms

Mass drop filtering

 isolate relatively symmetric subjets, with a significantly smaller mass than that of the original jet

Trimming

► reject softer subjets using a p_T fraction requirement $(p_{T,i}/p_{T,jet} < f)$ Pruning

► reject soft and wide angle components in a jet $(p_{T,i}/p_{T,jet} > z_{cut} \text{ and } \Delta R_{ij} < R_{cut}(m_{jet}, p_{T,jet}) \text{ at every recomb.})$

btag CMS

Tagging efficiency (eff) and misidentification probability (right) as a function of the fail et p., The HEPTogTagger performance (green) is combined with a subjet haagging requirement, for the medium (red) and loose (loue) operating points of the INFCSV algorithm. Here, boosted top jets are defined as hose jets had match within AR-15 to a generator-level top that decays hadronically. Jets are constructed from charged-hadron-subtracted particle-flow candidates using the HEPTogTagger algorithm, based on the Cambridge/Aachen jet clustering algorithm with distance parameter R=1.5. A filtering procedure is applied to define exactly three subjets for each 14 jet.

PUPPI

Figure 16: Mass response $< m_{reco} - m_{gen} >$ (left) and mass resolution quoted as RMS($m_{reco} - m_{gen}$) (right) for W jets as a function of the number reconstructed vertices.

Figure 17: Leading jet N-subjettiness τ_2/τ_1 distribution: QCD jets (left) and W jets (right). The distribution is shown also after requiring the pruned mass to be in the range 60-100 GeV (dashed lines).

- General idea:
 - Define some local observable α that discriminates collinear vs soft diffuse structure in the neighborhood of a particle
 - Distribution of α for <u>charged</u>, <u>central particles from PU</u> is assumed to be <u>representative of all PU</u> (including forward)
 - Define particle weight based on α distribution of charged PU on event-by-event basis (so it works only for high PU...)
 - · Rescale 4-momenta by these weights (before jet clustering)
- · Authors tried some local observables and this one is best:

from A. Giammanco

Sequentia	l selection	top-tagging	efficiency	 CMS Tagger, 	CMS	Combined	Tagger

$ \eta < 1.0$					
Selection	Data	MADGRAPH	POWHEG	MC@NLO	
$N_{subjets} \ge 3$	0.367 ± 0.015	0.365 ± 0.015	$0.318 {\pm} 0.014$	0.362 ± 0.016	
$m_{\rm min} > 50 ({\rm GeV}/c^2)$	0.719 ± 0.023	0.754 ± 0.022	0.735 ± 0.024	0.725 ± 0.024	
$140 < m_{jet} < 250 (GeV/c^2)$	0.954 ± 0.012	0.928 ± 0.015	0.917 ± 0.017	$0.928 {\pm} 0.016$	
$\tau_3 / \tau_2 < 0.55$	0.554 ± 0.030	0.573 ± 0.030	0.559 ± 0.032	0.587 ± 0.033	
subjet b-tag CSV-medium	$0.658 {\pm} 0.039$	$0.704 {\pm} 0.037$	$0.718 {\pm} 0.039$	$0.687 {\pm} 0.040$	

$1.0 < \eta < 2.4$				
Selection	Data	MADGRAPH	POWHEG	MC@NLO
$N_{subjets} \ge 3$	0.326 ± 0.022	0.323±0.022	$0.314 {\pm} 0.021$	0.291 ± 0.019
$m_{\rm min} > 50 ({\rm GeV}/c^2)$	0.456 ± 0.041	0.661 ± 0.040	0.619 ± 0.040	$0.615 {\pm} 0.037$
$140 < m_{jet} < 250 (GeV/c^2)$	0.866 ± 0.042	0.936 ± 0.025	0.939 ± 0.025	$0.936 {\pm} 0.024$
$\tau_3 / \tau_2 < 0.55$	0.362 ± 0.063	0.453 ± 0.053	0.428 ± 0.053	$0.447 {\pm} 0.051$
subjet b-tag CSV-medium	$0.905 {\pm} 0.064$	$0.680 {\pm} 0.074$	$0.595 {\pm} 0.080$	$0.702 {\pm} 0.070$

Data-simulation scale factor for sequential selections - CMS Tagger, CMS Combined Tagger

	$ \eta < 1.0$		
Selection	MADGRAPH	POWHEG	MC@NLO
$N_{subjets} \ge 3$	1.006 ± 0.057	1.153 ± 0.069	1.014 ± 0.060
$m_{\rm min} > 50 {\rm GeV}/c^2$	0.954 ± 0.041	0.978 ± 0.044	0.992 ± 0.046
$140 \text{GeV}/c^2 < m_{jet} < 250 \text{GeV}/c^2$	1.028 ± 0.021	1.040 ± 0.024	1.028 ± 0.023
$\tau_3/\tau_2 < 0.55$	0.967 ± 0.073	0.990 ± 0.079	0.943 ± 0.073
subjet b-tag CSV-medium	0.935 ± 0.074	0.915 ± 0.074	0.957 ± 0.079

$1.0 < \eta < 2.4$					
Selection	MADGRAPH	POWHEG	MC@NLO		
$N_{subjets} \ge 3$	1.010 ± 0.097	1.037 ± 0.099	1.122 ± 0.106		
$m_{\rm min} > 50 {\rm GeV}/c^2$	0.689 ± 0.075	0.737 ± 0.081	0.741 ± 0.081		
$140 \text{GeV}/c^2 < m_{\text{jet}} < 250 \text{GeV}/c^2$	0.925 ± 0.051	0.922 ± 0.051	0.925 ± 0.051		
$\tau_3/\tau_2 < 0.55$	0.800 ± 0.168	0.845 ± 0.181	0.810 ± 0.169		
subjet b-tag CSV-medium	1.331 ± 0.172	1.52 ± 0.232	1.289 ± 0.157		

HEPTT SF

$ \eta < 1.0$				
Tagger	p _T bin (GeV/c)	MADGRAPH	POWHEG	MC@NLO
	$200 < p_{\rm T} < 250$	0.91 ± 0.04	0.92 ± 0.04	0.88 ± 0.04
HEP Combined WP2	$250 < p_{\rm T} < 400$	0.93 ± 0.03	0.95 ± 0.03	0.93 ± 0.03
	$p_{\rm T} > 400$	1.15 ± 0.07	1.36 ± 0.07	1.19 ± 0.07
	$200 < p_{\rm T} < 250$	0.86 ± 0.05	0.86 ± 0.05	0.86 ± 0.05
HEP Combined WP3	$250 < p_{\rm T} < 400$	0.91 ± 0.04	0.93 ± 0.04	0.93 ± 0.04
	$p_{\rm T} > 400$	0.98 ± 0.09	1.10 ± 0.12	1.10 ± 0.12

Cumulative data-simulation scale factor - HEP Top Tagger, HEP Combined Tagger

$1.0 < \eta < 2.4$				
Tagger	p _T bin (GeV/c)	MADGRAPH	POWHEG	MC@NLO
	$200 < p_{\rm T} < 250$	0.95 ± 0.05	0.93 ± 0.06	0.93 ± 0.05
HEP Combined WP2	$250 < p_{\rm T} < 400$	0.91 ± 0.04	0.95 ± 0.05	0.95 ± 0.04
	$p_{\rm T} > 400$	0.85 ± 0.11	0.95 ± 0.15	0.99 ± 0.13
	$200 < p_{\rm T} < 250$	1.02 ± 0.07	1.00 ± 0.08	0.96 ± 0.07
HEP Combined WP3	$250 < p_{\rm T} < 400$	0.90 ± 0.05	0.97 ± 0.06	0.93 ± 0.05
	$p_{\rm T} > 400$	0.85 ± 0.16	1.00 ± 0.22	0.99 ± 0.19

Sequential data-simulation scale factor - HEP Combined Tagger WP3

$ \eta < 1.0$				
Tagger	p _T bin (GeV/c)	MADGRAPH	POWHEG	MC@NLO
	$200 < p_T < 250$	0.92 ± 0.02	0.94 ± 0.03	0.92 ± 0.02
HEP top mass selection	$250 < p_T < 400$	0.93 ± 0.02	0.96 ± 0.02	0.94 ± 0.02
	$p_{\rm T} > 400$	1.03 ± 0.03	1.07 ± 0.04	1.04 ± 0.04
	$200 < p_T < 250$	0.98 ± 0.03	0.98 ± 0.04	0.96 ± 0.03
HEP W mass selection	$250 < p_T < 400$	0.99 ± 0.02	0.99 ± 0.03	0.99 ± 0.02
	$p_{\rm T} > 400$	1.11 ± 0.05	1.27 ± 0.07	1.14 ± 0.06
	$200 < p_T < 250$	0.95 ± 0.04	0.93 ± 0.04	0.90 ± 0.03
N-subjettiness selection	$250 < p_T < 400$	0.98 ± 0.03	0.98 ± 0.03	0.94 ± 0.03
	$p_{\rm T} > 400$	0.85 ± 0.06	0.81 ± 0.07	0.84 ± 0.06

$1.0 < \eta < 2.4$				
Tagger	pT bin (GeWc)	MADGRAPH	POWHEG	MC@NLO
	$200 < p_T < 250$	0.89 ± 0.03	0.89 ± 0.04	0.90 ± 0.03
HEP top mass selection	$250 < p_T < 400$	0.92 ± 0.02	0.96 ± 0.03	0.97 ± 0.02
-	$p_{\rm T} > 400$	0.92 ± 0.07	0.98 ± 0.08	1.07 ± 0.08
	$200 < p_T < 250$	1.07 ± 0.04	1.04 ± 0.05	1.03 ± 0.04
HEP W mass selection	$250 < p_T < 400$	0.99 ± 0.03	0.99 ± 0.04	0.98 ± 0.03
	$p_{\rm T} > 400$	0.92 ± 0.10	0.97 ± 0.13	0.92 ± 0.11
	$200 < p_T < 250$	1.07 ± 0.05	1.07 ± 0.05	1.03 ± 0.05
N-subjettiness selection	$250 < p_T < 400$	0.99 ± 0.04	1.03 ± 0.05	0.98 ± 0.04
	$p_{\rm T} > 400$	1.01 ± 0.13	1.06 ± 0.17	1.00 ± 0.14

Figure 16: Comparison of various discriminant mass observable performance in the 475-600 GeV jet p_T bin, obtained considering simulated RS Graviton decaying in WW final state as source of W jet. Left: a comparison in the low pileup region $N_{PU} < 40$, and right: a comparison in the liw pileup region $d \le N_{PU}$.

Figure 17: Comparison of various substructure observable performance in the jet p_T bin, 475-600 GeV, considering W jet in RS $G \rightarrow WW (M_G = 1 \text{ TeV})$ events as signal. (Left) Comparison in the low pileup region $0 < N_{PU} < 40$, (Right) high pileup one $40 \le N_{PU} < 100$.

Wtag 2

grooming CMS

Shower deconstruction

- Start with all tracks, regardless of jets
- 2 Look for Seed Tracks with large Impact Parameter (distance to primary vertex)
- 3 Look for **track clusters** around Seed Tracks
- Fit the position of the secondary vertex from track clusters
- Apply some cleaning steps (e.g. merge vertices that are too close together)

from D. Nowatschin

Top Tag

38

Grooming

PUID and cleansing

JMS relative systematic uncertainties

W-jet mass calibration

We find that both the W-jet mass scale and resolution in data are larger than that in simulation. We should shift the simulation $\langle m \rangle$ by $+1.1 \pm 0.6$ GeV and enlarge the simulation σ by $16\% \pm$ 9% to correct for the difference in data/simulation.

Source	Effect on the scale factor
Parton showering	6.0%
Pileup	1.8%
Jet mass scale	< 0.5%
Jet mass resolution	0.7%
Jet energy scale	1.9%
Jet energy resolution	0.9%
Lepton ID	< 0.5%
b-tagging	< 0.5%
MET	< 0.5%
Total	6.7%