Top couplings and new physics: theoretical overview and developments

Cen Zhang

Université Catholique de Louvain

Centre for Cosmology, Particle Physics and Phenomenology

Oct 2nd, 2014 Top 2014, Cannes

Cen	Zhang	(CP3)

2 Oct

Top quark couplings

- ✓ Top couplings based on EFT.
- X NP models.
- ✓ Strategy for determining effective operators/couplings.
- EFT framework NLO accuracy.
- ✓ Flavor-conserving and flavor-changing couplings.
- X CP-violation, DM couplings, B-number violation

Outline

Cen	Zhang	(CP3)

 $\exists \rightarrow$

Outline

- 2 FCNC couplings
- 3 Flavor-conserving couplings
- 4 Conclusion

Overview

Production at Tevatron and LHC

20 years for almost 6 orders of magnitude \rightarrow the Top Quark era

Top precision era

With millions of top quarks,

- Many top-related parameters have been accurately measured
 - Top mass
 - $t\bar{t}$ and single t cross section
 - W helicity in top decay
 - FCNC at a level of Br $\sim 10^{-5}$
 - **۲**...
- Provide / will provide information for us to determine top-quark couplings from *every possible* direction.

イロト イロト イヨト イヨト

What's new in 2014

٩	EXP	
	Single t in tW channel	1401.2942
	 Search for tHj 	CMS-PAS-HIG-14-001
	• $t\bar{t}H$ search	1408.1682 1409.3122
	• Differential xsec for $t\bar{t}$	1407.0371
	▶	
۲	ТН	
	• $t\bar{t}Z$ at NLO with spin correlation	R. Rontsch and M. Schulze 1404.1005
	► $t\bar{t}H$, NLO in EW	S. Frixione et al. 1407.0823
	► $t\bar{t}W$, NLO+NNLL	H. T. Li et al. 1409.1460
	 MG5_aMC@NLO, any SM at NLO+PS 	J. Alwall et al. 1405.0301
	►	

臣

Top precision era

In the upcoming years we'll study top-quark couplings in

• More exclusive final state, $t\bar{t}H$, $t\bar{t}V$,...

• Rare processes, e.g. $t \rightarrow qX$, $ug \rightarrow tX$

Push limits on FCNC couplings.

	4	1 = 1 1 = 1	- E	*) Q (*
Cen Zhang (CP3)	Top Couplings	2 Oct		8

TH approach to couplings

From measurements to couplings: need a model-independent framework, which has to be consistent at NLO

- A complete TH framework for global analyses: EFT
- NLO corrections to the new couplings, or operators.
- Understand the mixing/contamination of the couplings due to higher-order.

EFT framework

Parametrize top-quark couplings with dimension-six operators in EFT Instead of "couplings", we prefer to talk about "operators"

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} rac{C_i O_i}{\Lambda^2}$$

- A framework where radiative corrections can be systematically included.
- In principle, can go to any order of $(\alpha/\pi)^m (1/\Lambda^2)^n$.
- Other advantages such as preserving SM gauge symmetries and being able to remove redundant terms due to EOM...

Global fit at NLO

In EFT framework, global analyses for top couplings can be performed (like the Higgs fits), at NLO accuracy.

Keep in mind: in principle an EFT approach requires a complete basis of operators to be used. Should avoid "one operator at a time" strategy.

- At LO neglecting some of them may still appear consistent. (a common mistake of using EFT)
- NLO counterterms and RG mixing effects clearly reveal the unnatural and inconsistent character of neglecting operators.

 $\mathrm{d}C_i(\mu)/\mathrm{dln}\mu = \gamma_{ij}C_j(\mu)$

• For a consistent understanding of top couplings, one can only do a global fit at a fixed scale, i.e. including all relevant operators simultaneously.

	4	지 문 제 제 문 제	-	w) Q (
Cen Zhang (CP3)	Top Couplings	2 Oct		11

Global fit at NLO

For a global fit at NLO, we still need

- Understand mixing effects.
- NLO calculations including dim-6 operators.
- Simulation tools.
- Experiment results based on a global strategy.

For the first three, some progresses have been made in the FCNC sector.

R. Alonso et al. 1312.2014

イロト イヨト イヨト イヨト

Outline

3 Flavor-conserving couplings

4 Conclusion

	4	ㅁ ▶ ◀ @ ▶ ◀ 혼 ▶ ◀ 혼 ▶	E ∽ < (~
Cen Zhang (CP3)	Top Couplings	2 Oct	13

In collaboration with C. Degrande, G. Durieux, F. Maltoni and J. Wang

	4	미 에 너 빠 에 한 에 한 에 한 에	≣
Cen Zhang (CP3)	Top Couplings	2 Oct	14

EFT for top FCNC

The FCNC sector is easier for a fit, because

- No interference with SM. Starts at $(C/\Lambda^2)^2$.
- Operator mixing structure is simple.

A top EFT for FCNC

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} rac{C_i O_i}{\Lambda^2}$$

requires a complete basis of flavor-changing operators to be used.

- Two-fermion operators, with one top-quark field one light-quark field.
- Four-fermion operators, with one top-quark field, one light-quark field and two leptons. (Often neglected in FCNC searches)

	4	미 에 너 빠 에 속 좀 에 너 좀 에 다	$\equiv \mathcal{O} \land \mathcal{O}$
Cen Zhang (CP3)	Top Couplings	2 Oct	15

Top FCNC @ NLO

Operators

	4		æ	$\mathcal{O}\mathcal{A}\mathcal{O}$
Cen Zhang (CP3)	Top Couplings	2 Oct		16

2-fermion operators

(1) $(\bar{u}\gamma^{\mu}t)Z_{\mu}$

$$\begin{split} O^{(3,1+3)}_{\varphi Q} &= i \left(\varphi^{\dagger} \tau^{I} D_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} \tau^{I} Q \right) \\ O^{(1,1+3)}_{\varphi Q} &= i \left(\varphi^{\dagger} D_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} Q \right) \\ O^{(1+3)}_{\varphi u} &= i \left(\varphi^{\dagger} D_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} t \right) \end{split}$$

($\bar{u}\sigma^{\mu\nu}q_{\nu}t$) V_{μ} , "weak dipole"

$$\begin{aligned} O^{(13)}_{uW} &= (\bar{q}\sigma^{\mu\nu}\tau^{l}t)\tilde{\varphi}W^{l}_{\mu\nu}\\ O^{(13)}_{uB} &= (\bar{q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu} \end{aligned}$$

($\bar{u}\sigma^{\mu\nu}q_{\nu}t$) G_{μ} , "color dipole"

$$O_{\mu G}^{(13)} = (\bar{q}\sigma^{\mu\nu}T^{A}t)\tilde{\varphi}G_{\mu\nu}^{A}$$

ūth, "Yukawa"

$$O_{\mu\varphi}^{(13)} = (\varphi^{\dagger}\varphi)(\bar{q}t)\hat{\varphi}$$

Cen Zhang (CP3)

Top Couplings

4-fermion operators

FCNC may be mediated by heavy particles.

• V-V

$$\begin{aligned}
 O_{lq}^{(1,1+3)} &= (\bar{l}\gamma_{\mu}l) (\bar{q}\gamma^{\mu}Q) \\
 O_{lq}^{(3,1+3)} &= (\bar{l}\gamma_{\mu}\tau^{l}l) (\bar{q}\gamma^{\mu}\tau^{l}Q) \\
 O_{lu}^{(1+3)} &= (\bar{l}\gamma_{\mu}l) (\bar{u}\gamma^{\mu}t) \\
 O_{qe}^{(1+3)} &= (\bar{q}\gamma_{\mu}Q) (\bar{e}\gamma^{\mu}e) \\
 O_{eu}^{(1+3)} &= (\bar{e}\gamma_{\mu}e) (\bar{u}\gamma^{\mu}t)
 \end{aligned}$$

• S-S $O_{lequ}^{(1,13)} = (\overline{l}e) \varepsilon (\overline{q}t)$ $O_{lequ}^{(1,31)} = (\overline{l}e) \varepsilon (\overline{Q}u)$

T-T

$$\begin{split} O^{(3,13)}_{lequ} &= \left(\bar{l}\sigma_{\mu\nu}\boldsymbol{e}\right)\varepsilon\left(\bar{q}\sigma^{\mu\nu}t\right)\\ O^{(3,31)}_{lequ} &= \left(\bar{l}\sigma_{\mu\nu}\boldsymbol{e}\right)\varepsilon\left(\bar{Q}\sigma^{\mu\nu}u\right) \end{split}$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

2 Oct

Top FCNC @ NLO

Mixings

	4		1	$\mathcal{O}\mathcal{A}\mathcal{O}$
Cen Zhang (CP3)	Top Couplings	2 Oct		19

Operator mixing in FCNC sector

Operators

$$\begin{split} &O_{uG}^{(13)} = y_t g_s(\bar{q}\sigma^{\mu\nu}T^A t)\tilde{\varphi}G^A_{\mu\nu} \\ &O_{uW}^{(13)} = y_t g_W(\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\varphi}W^I_{\mu\nu} \\ &O_{uB}^{(13)} = y_t g_Y(\bar{q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu} \\ &O_{u\varphi}^{(13)} = -y_t^3(\varphi^{\dagger}\varphi)(\bar{q}t)\tilde{\varphi} \end{split}$$

20

Scale corresponds to the change from m_t to 2 TeV.

Example:		
At $\mu =$ 1 TeV: $C_{UG}^{(13)} =$ 1, $C_{U\varphi}^{(13)} =$	$= 0 \qquad \Rightarrow \qquad \operatorname{At} \mu = 173 \operatorname{GeV}$	$C_{uG}^{(13)} = 0.98, C_{U\varphi}^{(13)} = 0.23$
		() <
Cen Zhang (CP3)	Top Couplings	2 Oct

Top FCNC @ NLO

NLO results for decays

	4		E nac
Cen Zhang (CP3)	Top Couplings	2 Oct	21

FCNC decay at NLO

- FCNC decay $t \rightarrow u(c) + X$ Suppressed by GIM mechanism in the SM, $BR \approx 10^{-13} \sim 10^{-16}$ but can be much larger in NP scenarios.
- NLO results in EFT are available for
 - $t \rightarrow u\gamma, t \rightarrow uZ, t \rightarrow ug$

J. Drobnak et al. 1007.2552 J.J. Zhang et al. 1004.0898 CZ and F. Maltoni 1305.7386

THATH TOOP

			=) \(\)
Cen Zhang (CP3)	Top Couplings	2 Oct	22

FCNC decay at NLO

- FCNC decay $t \rightarrow u(c) + X$ Suppressed by GIM mechanism in the SM, $BR \approx 10^{-13} \sim 10^{-16}$ but can be much larger in NP scenarios.
- NLO results in EFT are available for
 - $t \rightarrow u\gamma, t \rightarrow uZ, t \rightarrow ug$

J. Drobnak et al. 1007.2552 J.J. Zhang et al. 1004.0898 CZ and F. Maltoni 1305.7386

 $O_{\mu G}^{(13)} = g_{\mathcal{S}}(\bar{q}\sigma^{\mu\nu}T^{A}t)\tilde{\varphi}G_{\mu\nu}^{A}$

• • = • • = •

Cen Zhang (CP3)	Top Couplings	2 Oct	23

FCNC decay at NLO

 \blacktriangleright t \rightarrow uh

- FCNC decay $t \rightarrow u(c) + X$ Suppressed by GIM mechanism in the SM, $BR \approx 10^{-13} \sim 10^{-16}$ but can be much larger in NP scenarios.
- NLO results in EFT are available for

•
$$t \rightarrow u\gamma, t \rightarrow uZ, t \rightarrow ug$$

- J. Drobnak et al. 1007.2552 J.J. Zhang et al.
 - 1004.0898

```
CZ and F. Maltoni
1305.7386
```

► 4-fermion operators can contribute to $t \to u l^+ l^-$ (and interfere with 2-f operators) Some four-fermion contributions can be as large as two-fermion ones (e.g. $(\bar{l}\sigma_{\mu\nu}e)\varepsilon(\bar{q}\sigma^{\mu\nu}t))$

C. Zhang 1404.1264

Top FCNC @ NLO

NLO results for productions

	4	미 에 소리에 에 동 에 들어 있는 것	$\equiv \mathcal{O} \land \mathcal{O}$
Cen Zhang (CP3)	Top Couplings	2 Oct	25

Single top production can bring new information on top FCNC. In particular, here we are interested in $pp \rightarrow t\gamma$, $pp \rightarrow tZ$, $pp \rightarrow th$. Discrimination of initial quark u/c due to PDF

- Two (or more) contributions appear at LO. (O_{uB} and O_{uG})
- At NLO in QCD O_{uG} mixes with other operators. Always has to be included.
- Previous NLO results
 - $ug \rightarrow t$, with *tug* vertex.
 - $ug \rightarrow tZ$, $t\gamma$, with tug and $tuZ/tu\gamma$ vertices.
 - $ug \rightarrow th$, with tuh (but no tug) vertex.

- J. Gao et al. 0910.4349
- Y. Zhang et al. 1101.5346
- B. H. Li et al. 1103.5122
- Y. Wang et al. 1208.2902

Simulation tool

- Implementation of dim-6 FCNC (2-fermion) operators in aMC@NLO.
- Allows for automatic calculation at NLO in QCD, for any process.
- Events matched to shower at NLO accuracy. e.g. for $pp \rightarrow th$:

your_shell> ./bin/mg5
MG5_aMC> import model Top_FCNC
MG5_aMC> generate p p > t h [QCD]
MG5_aMC> output some_DIR
MG5_aMC> launch

Event record file (or plots), after shower, will be found in

./some_DIR/Events/run_01/

Cen Zhang (CP3)	Cen	Zhang	(CP3)
-----------------	-----	-------	-------

• Results for $pp \rightarrow t\gamma$ and $pp \rightarrow th$ at NLO+PS: p_T distribution for top (A=1 TeV) Left: $pp \rightarrow t\gamma$ Right: $pp \rightarrow th$

Cen Zhang (CP3)	Top Couplings	2 Oct	28

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Top FCNC @ NLO

Global fit

	4	미 에 세례에 세종에 세종이 세종이	₹ •0 °	(C
Cen Zhang (CP3)	Top Couplings	2 Oct	;	29

Global fit: operators

10 operators for *tcX* coupling

(1) $(\bar{u}\gamma^{\mu}t)Z_{\mu}$

$$\begin{split} O_{\varphi Q}^{(-,2+3)} &= \left[i \left(\varphi^{\dagger} \tau^{I} D_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} \tau^{I} Q \right) - i \left(\varphi^{\dagger} D_{\mu} \varphi \right) \left(\bar{q} \gamma^{\mu} Q \right) \right] / 2 \\ O_{\varphi u}^{(2+3)} &= i \left(\varphi^{\dagger} D_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} t \right) \end{split}$$

($\bar{u}\sigma^{\mu\nu}q_{\nu}t$) V_{μ} , "weak dipole"

$$\begin{aligned} O_{UW}^{(23)} &= (\bar{q}\sigma^{\mu\nu}\tau^l t)\tilde{\varphi}W_{\mu\nu}^l & O_{uW}^{(32)} &= (\bar{Q}\sigma^{\mu\nu}\tau^l c)\tilde{\varphi}W_{\mu\nu}^l \\ O_{UB}^{(23)} &= (\bar{q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu} & O_{UB}^{(32)} &= (\bar{Q}\sigma^{\mu\nu}c)\tilde{\varphi}B_{\mu\nu} \end{aligned}$$

 $(\bar{u}\sigma^{\mu\nu}q_{\nu}t)G_{\mu}, \text{ "color dipole"}$

$$O_{uG}^{(23)} = (\bar{q}\sigma^{\mu\nu}T^{A}t)\tilde{\varphi}G^{A}_{\mu\nu} \qquad \qquad O_{uG}^{(32)} = (\bar{Q}\sigma^{\mu\nu}T^{A}c)\tilde{\varphi}G^{A}_{\mu\nu}$$

ūth, "Yukawa"

$$O_{U\varphi}^{(23)} = (\varphi^{\dagger}\varphi)(\bar{q}t)\tilde{\varphi} \qquad \qquad O_{U\varphi}^{(32)} = (\varphi^{\dagger}\varphi)(\bar{Q}c)\tilde{\varphi}$$

Cen	Zhang	(CP3)

э

Global fit: observables

• $t \rightarrow qZ$: Br $(t \rightarrow qZ) < 0.05\%$	CMS-TOP-12-037
• $t \rightarrow qh$: Br($t \rightarrow ch$)<0.56%	CMS-PAS-HIG-13-034
• $qg \rightarrow t$: Br $(t \rightarrow ug)$ <3.1 × 10 ⁻⁵ , Br $(t \rightarrow cg)$ <1.6 × 10 ⁻⁴	ATLAS-CONF-2013-063
• $qg \rightarrow t\gamma$: Br $(t \rightarrow u\gamma)$ <0.0161%, Br $(t \rightarrow c\gamma)$ <0.182% (assuming <i>tug</i> vanishes)	CMS-PAS-TOP-14-003

E

Global fit: counting dof

In the case of FCNC, one observable can constrain several combinations of operator coefficients.

For example in t → qZ, the decay rate can be written as a sum of squares, corresponding to t → q_LZ₀, t → q_RZ₀, t → q_LZ_− and t → q_RZ₊

At LO:

$$\begin{split} & -\frac{\alpha m_l (1-x^2)^2}{8 \Lambda^4 s_W^2 c_W^2} \\ & \sum_{a=1,2} \Big\{ \left| \frac{1}{2x} C_{\varphi q}^{-(a+3)} - 2x \left(s_W^2 C_{UB}^{(a3)} - c_W^2 C_{UW}^{(a3)} \right) \right|^2 \\ & + \left| \frac{1}{2x} C_{\varphi u}^{(a+3)} - 2x \left(s_W^2 C_{UB}^{(3a)*} - c_W^2 C_{UW}^{(3a)*} \right) \right|^2 \\ & + 2 \left| \frac{1}{2} C_{\varphi q}^{-(a+3)} + 2 \left(s_W^2 C_{UB}^{(a3)} - c_W^2 C_{UW}^{(a3)} \right) \right|^2 \\ & + 2 \left| \frac{1}{2} C_{\varphi u}^{(a+3)} + 2 \left(s_W^2 C_{UB}^{(3a)*} - c_W^2 C_{UW}^{(3a)*} \right) \right|^2 \Big\}, \end{split}$$

Cen Zhang (CP3)

< □ > < @ > < ≥ > < ≥ > 2 Oct

Global fit: "contamination" at NLO

In the case of FCNC, one observable can constrain several combinations of operator coefficients.

For example in t → qZ, the decay rate can be written as a sum of squares, corresponding to t → q_LZ₀, t → q_RZ₀, t → q_LZ_− and t → q_RZ₊

At NLO, $O_{UG}^{(a3,3a)}$ come in: $\sum_{a=1,2} \left\{ |0.40 \ C_{\varphi q}^{-(a+3)} + 0.25 \ C_{UB}^{(a3)} - 0.88 \ C_{UW}^{(a3)} + 0.036 \ C_{UG}^{(a3)}|^2 + |0.40 \ C_{\varphi q}^{(a+3)} + 0.25 \ C_{UB}^{(a)} - 0.88 \ C_{UW}^{(3a)} - 0.021 \ C_{UG}^{(3a)}|^2 + 0.048 \ |0.92 \ C_{\varphi q}^{-(a+3)} - 0.11 \ C_{UB}^{(a3)} + 0.39 \ C_{UW}^{(3a)} + 0.030 \ C_{UG}^{(a3)}|^2 + 0.048 \ |0.92 \ C_{\varphi q}^{(a+3)} - 0.11 \ C_{UB}^{(3a)} + 0.39 \ C_{UW}^{(3a)} - 0.027 \ C_{UG}^{(3a)}|^2 \right\} \\ < 0.23 \ \left(\frac{\Lambda}{1 \ \text{TeV}}\right)^4.$

Global fit: counting dof

In the case of FCNC, one observable can constrain several combinations of operator coefficients.

For example in t → qZ, the decay rate can be written as a sum of squares, corresponding to t → q_LZ₀, t → q_RZ₀, t → q_LZ_− and t → q_RZ₊

• 4
$$(t \rightarrow qZ)$$
 + 2 $(t \rightarrow ch)$ + 2 $(qg \rightarrow t)$ + 2 $(qg \rightarrow t\gamma)$ = 10

	4	ㅁ 돈 옷 데 돈 옷 옷 든 돈 옷 든 돈	≣ ≁) Q (≯
Cen Zhang (CP3)	Top Couplings	2 Oct	34

Global limits

In the case of FCNC, one observable can constrain several combinations of operator coefficients.

۹ Result (with $\Lambda = 1$ TeV)

Cen Zhang (CP3)

Global limits

Four-fermion operators may be included, e.g.

- $O_{lq}^{(1,1+3)} = (\bar{l}\gamma_{\mu}l) (\bar{q}\gamma^{\mu}Q)$ (vector)
- $O_{lequ}^{(1,13)} = (\bar{l}e) \varepsilon (\bar{q}t)$ (scalar)
- $O_{lequ}^{(3,13)} = (\bar{l}\sigma_{\mu\nu}e) \varepsilon (\bar{q}\sigma^{\mu\nu}t)$ (tensor)

moreover include $e^+e^-
ightarrow tj$ at LEP2 in the fit. Results looks like

	4	미 🛛 🖉 🕨 🤇 분 🗸 분 🕨	12	$\mathcal{O} \land \mathcal{O}$
Cen Zhang (CP3)	Top Couplings	2 Oct		36

Global limits

Four-fermion operators may be included, e.g.

- $O_{lq}^{(1,1+3)} = (\bar{l}\gamma_{\mu}l) (\bar{q}\gamma^{\mu}Q)$ (vector)
- $O_{lequ}^{(1,13)} = (\bar{l}e) \varepsilon (\bar{q}t)$ (scalar)
- $O_{lequ}^{(3,13)} = (\bar{l}\sigma_{\mu\nu}e) \varepsilon (\bar{q}\sigma^{\mu\nu}t)$ (tensor)

moreover include $e^+e^- \rightarrow tj$ at LEP2 in the fit. Results looks like

FCNC Summary

- Complete EFT framework for FCNC
- Can be applies at NLO
- Mixing understood
- NLO predictions (almost) complete
- Exp results based on global strategy?
- \Rightarrow Global fit for FCNC couplings at NLO accuracy

Outline

- 2 FCNC couplings
- Flavor-conserving couplings

4 Conclusion

	4		
Cen Zhang (CP3)	Top Couplings	2 Oct	38

EFT for flavor-conserving sector

• $tt\gamma/ttg$, EM/color dipole

$$O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu} \qquad O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^{A}t)\tilde{\varphi}G^{A}_{\mu\nu}$$

tbW

V/A

$$O^{(3)}_{\varphi Q} = i(\varphi^{\dagger} D_{\mu} \tau^{I} \varphi) (\bar{Q} \tau^{I} \gamma^{\mu} Q) \qquad O_{\varphi \varphi} = i(\tilde{\varphi}^{\dagger} D_{\mu} \varphi) (\bar{t} \gamma^{\mu} b)$$

Weak dipole

$$O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^{l}t)\tilde{\varphi}W^{l}_{\mu\nu} \qquad O_{bW} = (\bar{Q}\sigma^{\mu\nu}\tau^{l}b)\varphi W^{l}_{\mu\nu}$$

ttZ

V/A

$$O_{\varphi Q}^{(1)} = i(\varphi^{\dagger} D_{\mu} \varphi)(\bar{Q} \gamma^{\mu} Q) \qquad O_{\varphi u} = i(\varphi^{\dagger} D_{\mu} \varphi)(\bar{t} \gamma^{\mu} t)$$

ttH

$$O_{t\varphi} = (\varphi^{\dagger}\varphi)(\bar{Q}t)\tilde{\varphi}$$

			_	
Cen Zhang (CP3)	Top Couplings	2 Oct		39

• • = • • = •

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$
t-channel single t			1	1			
tW production	1		1	1			
top decay			1				
tī	1						
tīV	1	1	1	1	1	1	
tīH	1						1
$gg \rightarrow H, H \rightarrow \gamma \gamma$	1						1

- Dipole operators O_{tG} , O_{tB} , O_{tW}
- $ttZ \ O_{\varphi Q}^{(3)}, \ O_{\varphi Q}^{(1)}, \ O_{\varphi t}$

• . . .

• *ttH O*_{t φ} in Higgs fits.

A. Tonero and R. Rosenfeld 1404.2581

R. Rontsch and M.Schulze 1404.1005

イロト イポト イヨト イヨト

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{\varphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$
t-channel single t			1	1			
tW production	1		1	1			
top decay			1				
tī	1						
tīV	1	1	1	1	1	1	
tīH	1						1
$gg \rightarrow H, H \rightarrow \gamma\gamma$	1						1

However, there are still a lot more to do... We need

• A global analysis.

Include all operators. Each data constrains a combination. Once we combine all data we constrain all couplings.

	4	ロト 《圖 》 《 문 》 《 문 》	三 うくぐ
Zhang (CP3)	Top Couplings	2 Oct	41

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{\varphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$	O _G	$O_{arphi G}$	0 _{4-f}
t-channel single t			1	1				1		1
tW production	1		1	1						
top decay			1							1
tī	1							1		1
tīV	1	1	1	1	1	1		1		1
tīH	1						1	1	1	1
$gg \rightarrow H, H \rightarrow \gamma\gamma$	1						1	1	1	

However, there are still a lot more to do... We need

A global analysis.

More operators, in particular 4-fermion operators, should be included.

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{\varphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$	O _G	$O_{arphi G}$	0 _{4-f}
t-channel single t			1	1				1		1
tW production	1		1	1						
top decay			1							1
tī	1							1		1
tīV	1	1	1	1	1	1		1		1
tīH	1						1	1	1	1
$gg \rightarrow H, H \rightarrow \gamma\gamma$	1						1	1	1	

However, there are still a lot more to do... We need

- A global analysis. In particular 4-fermion operators.
- NLO corrections, not only to SM but also to higher dim operators.
 - Only several operator are studied. \sim 30 50% for SM-like couplings.
 - QCD corrections to dim-6 FCNC operators $\sim 40-80\%$

イロト イヨト イヨト イヨト

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{\varphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$	O _G	$O_{arphi G}$	0 _{4-f}
t-channel single t	 Image: A start of the start of		1	1				1		1
tW production	1		1	1				1	1	1
top decay	1		1							1
tī	1							1	1	1
tīV	1	1	1	1	1	1		1	1	1
tīH	1						1	1	1	1
$gg \rightarrow H, H \rightarrow \gamma\gamma$	1						1	1	1	

However, there are still a lot more to do... We need

- A global analysis. In particular 4-fermion operators.
- NLO corrections, not only to SM but also to higher dim operators.
 - Only several operator are studied. \sim 30 50% for SM-like couplings.
 - QCD corrections to dim-6 FCNC operators $\sim 40-80\%$
 - Mixing/contamination due to higher order correction.

Cen	Zhang	(CP3)

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{\varphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$	O _G	$O_{arphi G}$	0 _{4-f}
t-channel single t	 Image: A start of the start of		1	1				1		1
tW production	1		1	1				1	1	1
top decay	1		1							1
tī	1							1	1	1
tīV	1	1	1	1	1	1		1	1	1
tīH	1						1	1	1	1
$gg \rightarrow H, H \rightarrow \gamma\gamma$	1						1	1	1	

However, there are still a lot more to do... We need

- A global analysis. In particular 4-fermion operators.
- NLO corrections, not only to SM but also to higher dim operators.
- Understand the RG mixing effect.

< 6 b

Flavor-conserving couplings

Operator Mixing between $t\bar{t}H$ and $t\bar{t}g$

Operators

$$\begin{split} &O_{lG} = y_t g_s (\bar{\Omega} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} \\ &O_{lW} = y_t g_W (\bar{\Omega} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W^I_{\mu\nu} \\ &O_{lB} = y_t g_Y (\bar{\Omega} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ &O_{l\varphi} = -y_t^3 (\varphi^{\dagger} \varphi) (\bar{\Omega} t) \tilde{\varphi} \end{split}$$

Scale corresponds to the change from mt to 2 TeV.

Example:				
At $\mu=$ 1 TeV: $C_{tG}=$ 1, $C_{t\varphi}=$ 0	⇒	At $\mu = 173$ GeV: $C_{tG} = 0.98$, $C_{t\varphi} = 0.45$	J	
		 < □ > < □ > 	æ	500
Cen Zhang (CP3)	Top Couplings	2 Oct		46

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{\varphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$	O _G	$O_{arphi G}$	0 _{4-f}
t-channel single t	 Image: A start of the start of		1	1				1		1
tW production	1		1	1				1	1	1
top decay	1		1							1
tī	1							1	1	1
tīV	1	1	1	1	1	1		1	1	1
tīH	1						1	1	1	1
$gg \rightarrow H, H \rightarrow \gamma\gamma$	1						1	1	1	

However, there are still a lot more to do... We need

- A global analysis. In particular 4-fermion operators.
- NLO corrections, not only to SM but also to higher dim operators.
- Understand the RG mixing effect.
- Exp measurements based on a global approach.

Cen Zhang (CP3
-------------	-----

Outline

- 2 FCNC couplings
- 3 Flavor-conserving couplings

	4	ㅁ ▷ < 62 ▷ < 큰 ▷ < 큰 ▷	≣ *) Q (*
Cen Zhang (CP3)	Top Couplings	2 Oct	48

Summary

- TH framework for top couplings based on EFT, where predictions can be systematically improved, several measurements can be consistently combined, and useful information can be obtained by global fits.
- NLO corrections to higher dimensional operators are being studied. Some progresses have been made in top-quark FCNC sector. More to do in flavor-conserving sector.
- MC generator with full EFT framework at NLO in QCD will become available in future, providing a realistic tool needed for global analyses in the top sector.

ヘロト 人間ト 人目ト 人目ト

It is time to seriously think about global analysis for top-quark couplings.

	4		Ξ.	$\mathcal{O}\mathcal{A}\mathcal{O}$
Cen Zhang (CP3)	Top Couplings	2 Oct		50

It is time to seriously think about global analysis for top-quark couplings.

and in order to do that...

Cen Zhang (CP3)

Backups

	4		≣
Cen Zhang (CP3)	Top Couplings	2 Oct	51

	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$
t-channel single t			1	\checkmark			
tW production	1		1	\checkmark			
top decay			1				
tī	1						
tīV	1	1	1	\checkmark	\checkmark	\checkmark	
tīH	\checkmark						\checkmark
$gg ightarrow H, H ightarrow \gamma \gamma$	\checkmark						\sim

• Dipole operators O_{tG} , O_{tB} , O_{tW} At 2σ CL At 2σ CL

 $\begin{array}{l} -0.4 < \bar{c}_{tB} < 0.4 & -0.002 < \bar{c}_{tW} < 0.024 & -0.007 < \bar{c}_{tG} < 0.002 \\ \\ \frac{C_{tB}}{\Lambda^2} = \frac{\bar{c}_{tB}g'y_t}{m_W^2} & \frac{C_{tW}}{\Lambda^2} = \frac{\bar{c}_{tW}gy_t}{m_W^2} & \frac{C_{tG}}{\Lambda^2} = \frac{\bar{c}_{tG}g_sy_t}{m_W^2} \\ \text{(see also 1408.7063)} \end{array}$

	O _{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$
t-channel single t			\checkmark	1			
tW production	\checkmark		\checkmark	\checkmark			
top decay			1				
tī	\checkmark						
tīV	\checkmark	\checkmark	\checkmark	1	1	1	
tīH	\checkmark						\checkmark
$gg ightarrow H, H ightarrow \gamma \gamma$	\checkmark						\checkmark

• $ttZ O_{\varphi Q}^{(3)}, O_{\varphi Q}^{(1)}, O_{\varphi t}$

R. Rontsch and M.Schulze 1404.1005

$$egin{aligned} &-0.5 < rac{v^2}{\Lambda^2} C_{arphi Q}^{(3)} < 0.68 \ & C_{arphi Q}^{(1)} = -C_{arphi Q}^{(3)} \ &-0.82 < rac{v^2}{\Lambda^2} C_{arphi t} < 1.59 \end{aligned}$$

Cen Zhang (CP3)

< □ > < @ > < 큰 > < 큰 > 2 Oct Conclusion

Constraining top couplings

	O_{tG}	O_{tB}	O_{tW}	$O^{(3)}_{arphi Q}$	$O^{(1)}_{arphi Q}$	$O_{\varphi t}$	$O_{t\varphi}$
t-channel single t			\checkmark	\checkmark			
tW production	\sim		\checkmark	\checkmark			
top decay			1				
tī	\checkmark						
tīV	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
tīH	\checkmark						1
$gg \rightarrow H, H \rightarrow \gamma \gamma$	1						1

Indirect bounds...

Indirect bounds on top couplings from precision measurements also provide useful information.

- Weak operators from precision EW test.
- $O_{\varphi Q}^{(3)}$ and $O_{\varphi t}$ from T, δg_b^L and $B_s \to \mu^+ \mu^-$.
- Wtb vertex from $B_{d,s} \overline{B}_{d,s}$, $B \to X_s l^+ l^-$, $B \to X_s \gamma$.
- *ttH* from EDM.
- RG-induced bounds

But most results have some kind of "ambiguity"

Cen Zhang (C	CP3
--------------	-----

Indirect bounds from loops

Bounds from loop are sensitive to TH assumptions

Typically, for a observable X, at loop level a "tree-level" operator absorbs divergence from the "loop-level" operator

$$X \sim C_{tree} + C_{loop} rac{lpha}{\pi} \left(rac{1}{arepsilon} + \log rac{E}{\mu} + \textit{finite}
ight)$$

In MS,

at
$$\mu \sim E$$
 $X = C_{tree}(\mu) + C_{loop} \frac{\alpha}{\pi} \left(\log \frac{E}{\mu} + finite \right)$
at $\mu \sim \Lambda$ $X = C_{tree}(\Lambda) + C_{loop} \frac{\alpha}{\pi} \left(\log \frac{E}{\Lambda} + finite \right)$

To get bound, assume "no unnatural cancellation between Ctree and Cloop"

$$\begin{split} & C_{tree}(\mu) = 0 \Rightarrow C_{loop} \sim X / \left(\frac{\alpha}{\pi} \textit{finite}\right) \\ & C_{tree}(\Lambda) = 0 \Rightarrow C_{loop} \sim X / \left(\frac{\alpha}{\pi} \log \frac{E}{\Lambda}\right) \qquad \text{RG-induced bound} \end{split}$$

Still, in principle ambiguities can be avoided in a global fit.

Cen Zhang (CP3)	
-----------------	--

イロト イポト イヨト イヨト

Global fit at NLO

- While an EFT description in principle requires a complete basis of operators to be used, at LO neglecting some of them may appear consistent. (a common mistake of using EFT)
- NLO counterterms and RG mixing effects clearly reveal the unnatural and inconsistent character of neglecting operators.
- For a consistent understanding of top couplings, one should do a global fit at a fixed scale, i.e. constrain all operators simultaneously, for at least two reasons:
- Naturalness Even though one can make a specific (arbitrary) choice of operator coefficients high scales (where one can imagine a full theory to live), when evolved to lower scales many operators become active due to operator mixing.
 - \Rightarrow Should include every operator that might contribute. e.g. both vector and tensor coupling for ttZ, 4-fermion operator, etc.

Renomalizability If one neglects any operator that is renormalized by other operators, then one can not get a finite result, because of missing counterterms.

 \Rightarrow At least, need to include enough operators to make a NLO calculation renormalizable. イロト 不得 トイヨト イヨト

Cen Zhang (CP3)

Conclusion

FCNC mixing

$$\begin{split} & O_{uG}^{(13)} = y_t g_s(\bar{q}\sigma^{\mu\nu}T^A t)\tilde{\varphi}G^A_{\mu\nu} \\ & O_{uW}^{(13)} = y_t g_W(\bar{q}\sigma^{\mu\nu}\tau^I t)\tilde{\varphi}W^I_{\mu\nu} \\ & O_{uB}^{(13)} = y_t g_Y(\bar{q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu} \\ & O_{u\varphi}^{(13)} = -y_t^3(\varphi^{\dagger}\varphi)(\bar{q}t)\tilde{\varphi} \end{split}$$

$$\gamma = \frac{2\alpha_s}{\pi} \left(\begin{array}{cccc} \frac{1}{6} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{5}{9} & 0 & \frac{1}{3} & 0 \\ -2 & 0 & 0 & -1 \end{array} \right)$$

same for:

$$\begin{split} O^{(31)}_{uG} &= y_t g_S(\bar{Q}\sigma^{\mu\nu} T^A u) \tilde{\varphi} G^A_{\mu\nu} \\ O^{(31)}_{uW} &= y_t g_W(\bar{Q}\sigma^{\mu\nu} \tau^l u) \tilde{\varphi} W^l_{\mu t} \\ O^{(31)}_{uB} &= y_t g_Y(\bar{Q}\sigma^{\mu\nu} u) \tilde{\varphi} B_{\mu\nu} \\ O^{(31)}_{u\varphi} &= -y_t^3 (\varphi^{\dagger} \varphi) (\bar{Q}u) \tilde{\varphi} \end{split}$$

$$\begin{split} &O^{(13)}_{dG} = y_t g_S(\bar{q}\sigma^{\mu\nu}T^A b)\varphi G^A_{\mu\nu} \\ &O^{(13)}_{dW} = y_t g_W(\bar{q}\sigma^{\mu\nu}\tau^l b)\varphi W^l_{\mu\nu} \\ &O^{(13)}_{dB} = y_t g_Y(\bar{q}\sigma^{\mu\nu}b)\varphi B_{\mu\nu} \\ &O^{(13)}_{d\varphi} = -y^3_l(\varphi^{\dagger}\varphi)(\bar{q}b)\varphi \end{split}$$

$$\gamma = \frac{2\alpha_{\rm S}}{\pi} \left(\begin{array}{cccc} \frac{1}{6} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ -\frac{1}{9} & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & -1 \end{array} \right)$$

same for:

$$\begin{split} &O^{(31)}_{dG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A d) \varphi G^A_{\mu\nu} \\ &O^{(31)}_{dW} = y_t g_W (\bar{Q} \sigma^{\mu\nu} \tau^I d) \varphi W^I_{\mu\nu} \\ &O^{(31)}_{dB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} d) \varphi B_{\mu\nu} \\ &O^{(31)}_{dG} = -y_l^3 (\varphi^{\dagger} \varphi) (\bar{Q} d) \varphi \end{split}$$

Cen Zhang (CP3

イロト イポト イヨト イヨト

臣

Some numerical results for $t \rightarrow ull$

Results for several typical (2-f and 4-f) operators, for $t \rightarrow ull$, assuming $C_i/\Lambda^2 = 1 \text{ TeV}^{-2}$. (In total, 8 two-fermion + 8 four-fermion operators.)

2-f and V-V (4-f) operators

Unit : GeV	$\Re\left(\mathcal{C}_{arphi q}^{(1,1+3)} ight)$	$\Re\left(\mathcal{C}_{uW}^{(13)}\right)$	$\Re\left(\mathcal{C}_{uG}^{(13)} ight)$	$\Re\left(\mathcal{C}_{lq}^{(1,1+3)} ight)$
$\Re\left(\mathcal{C}_{arphi q}^{(1,1+3)} ight)$	$1.9 imes 10^{-5} \ _{-8\%}$	$-6.2 imes 10^{-5} ext{ -8\%}$	2.9×10^{-6}	$-3.5\times10^{-7}_{-12\%}$
$\Re\left(C_{uW}^{(13)}\right)$		$7.6 imes 10^{-5}\ _{-9\%}$	-6.1×10^{-6}	$-3.3 \times 10^{-6} \\ ^{-7\%}$
$\Re\left(C_{uG}^{(13)} ight)$			6.8×10^{-8}	2.6×10^{-7}
$\Re\left(C_{lq}^{(1,1+3)} ight)$				$2.9 \mathop{\times}_{-8\%}^{+10^{-6}}$

S-S and T-T (4-f) operators

Unit : GeV	$\Re\left(\mathcal{C}_{lequ}^{(1,13)} ight)$	$\Re\left(\mathcal{C}_{lequ}^{(3,13)} ight)$	
$\Re\left(\mathcal{C}_{lequ}^{(1,13)} ight)$	8.2×10^{-7}		
$\Re\left(\mathcal{C}_{lequ}^{(3,13)} ight)$.,,,	$3.5 \mathop{ imes}_{-8\%}^{10^{-5}}$	
		_	

Conclusion

The status of Top Quark Physics

60

• Higgs rapidity distribution from O_{uG} and $O_{u\varphi}$ in $pp \rightarrow th$

Cen Zhang (CI	P3)
-------------	----	-----

four-fermion operators at lep2

four-fermion operators in $e^+e^-
ightarrow tar q$

• consider for example 2-f operator $o_{\varphi u}^{(1+3)} = i \left(\varphi^{\dagger} d_{\mu} \varphi \right) \left(\bar{u} \gamma^{\mu} t \right)$ and 4-f vector operator $o_{eu}^{(1+3)} = \left(\bar{e} \gamma_{\mu} e \right) \left(\bar{u} \gamma^{\mu} t \right)$ in lep2

nlo cross sections available via mg5_amc@nlo

2 Oct

Conclusion

four-fermion operators in $pp \rightarrow tll$

lepton inv. mass distribution in $pp \rightarrow tll$, from 2-f operator $o_{\varphi u}^{(1+3)}$ only, from 4-f operator o_{eu} only, and from their interference.

Cen Zhang (CP3)

Conclusior

Four-fermion operators in $t \rightarrow qZ$

• 2-f operators $(O_{\varphi q}, O_{uW}...), t \rightarrow uZ, Z \rightarrow II.$

 \Rightarrow peak at Z mass.

- 4-f operators $(O_{lequ},...), t \rightarrow ull.$
 - \Rightarrow continuous spectrum.

However, 4-f contribution is not negligible, even with cuts on M_{\parallel} .

On-shell cut: $M_{ll} \in [78, 102]$ GeV (taken from 1312.4194)

$$\begin{split} \Gamma_{\text{on}} &= \left(7.0 |C_{uW}^{(13)}|^2 + 7.3 |C_{\varphi q}^{(1,1+3)}|^2 + 0.8 |C_{lequ}^{(3,13)}|^2\right) \times 10^{-5} \text{ GeV} \\ &\Rightarrow \delta C_{uW}^{(13)} : \delta C_{\varphi q}^{(1,1+3)} : \delta C_{lequ}^{(3,13)} \approx 1 : 1 : 3 \end{split}$$

64

Conclusior

Four-fermion operators in $t \rightarrow qZ$

• 2-f operators $(O_{\varphi q}, O_{uW}...), t \rightarrow uZ, Z \rightarrow II.$

 \Rightarrow peak at Z mass.

- 4-f operators $(O_{lequ},...), t \rightarrow ull.$
 - \Rightarrow continuous spectrum.

However, 4-f contribution is not negligible, even with cuts on $M_{\rm H}$.

Alternatively, could also look at off-shell region: $M_{II} \in [15, 78] \cup [102, \infty]$ GeV

$$\Gamma_{\rm off} = \left(0.6 |C_{uW}^{(13)}|^2 + 0.4 |C_{\varphi q}^{(1,1+3)}|^2 + 2.7 |C_{lequ}^{(3,13)}|^2\right) \times 10^{-5} \ {\rm GeV}$$

4-fermion operator has a larger contribution. Might get improved limit on 4-fermion operator due to less Drell-Yan background.

Cen Zhang (CP3)	Top Couplings	2 Oct	65

Four-fermion operators in $t \rightarrow qZ$

One can constrain

- 2-f operator (e.g. $O_{\varphi q}^{(1,1+3)} = i \left(\varphi^{\dagger} D_{\mu} \varphi \right) (\bar{q} \gamma^{\mu} Q)$)
- 4-f operator (e.g. $O_{lequ}^{(1,13)} = (\bar{l}\sigma_{\mu\nu}e) \varepsilon (\bar{q}\sigma^{\mu\nu}t)$)

simultaneously, by looking at both on-shell and off-shell region of $M_{\rm H}$

Limit from $t \rightarrow qZ$ □ on-shell □ off-shell (estimate) Clequ (4-f) -2-10 2 $C_{\phi q}^{(1,1+3)}$ (2-f)