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The b ➔sγ process is a good probe of 
fundamental properties of SM as well as 
BSM (CKM, top mass, new particle mass etc..)
Especially, the b→sγ process has a 
particular structure in SM.
The requirement of the chirality flip leads to 
a left-photon dominance.   

W−
s

W−

γ

b

γ
R L

L

W−
b

γ
L R

R

W−

mbs̄LσµνqνbR mss̄RσµνqνbL

In the 
SM, the opposite 

chirality is 
suppressed by 

ms/mb

b

The b→sγ processes in SM

Unknown charm contribution 
under discussions!



The b ➔sγ process is a good probe of 
fundamental properties of SM as well as 
BSM (CKM, top mass, new particle mass etc..)
Especially, the b→sγ process has a 
particular structure in SM.
The requirement of the chirality flip leads to 
a left-photon dominance.   

W−
s

W−

γ

b

γ
R L

L

W−

mbs̄LσµνqνbR

! b ➔s γL (left-handed polarization)
! b ➔s γR (right-handed polarization)- -

W-boson coupling 
left-handedly, leads to the 

circular polarization of 
photon

b

The b→sγ processes in SM



The b ➔sγ process is a good probe of 
fundamental properties of SM as well as 
BSM (CKM, top mass, new particle mass etc..)
Especially, the b→sγ process has a 
particular structure in SM.
The requirement of the chirality flip leads to 
a left-photon dominance.   

W−
s

W−

γ

b

γ
R L

L

W−

mbs̄LσµνqνbR

! b ➔s γL (left-handed polarization)
! b ➔s γR (right-handed polarization)- -

W-boson coupling 
left-handedly, leads to the 

circular polarization of 
photon

b

However, this left-handedness of the 
polarization of b ➔s γ has never been 
confirmed at a high precision yet!! 

The b→sγ processes in SM



Right-handed: which NP model?
What types of new physics models?                                
For example, models with right-handed 
neutrino, or custodial symmetry in general 
induces the right handed current. 
  

 
Which flavour structure?                           
The models that contain new particles which 
change the chirality inside of the b➔sγ loop 
can induce a large chiral enhancement! 

Left-Right symmetric 
model: mt/mb

SUSY with δRL mass 
insertions: mSUSY/mb
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SUSY GUT model δRR 
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NP signal 
beyond the 

constraints from 
Bs oscillation 
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Example: Left-Right Symmetric Model

CKM matrix. In section 3 and 4, we describe the b → sγ and meson mixings in LRSM.
We show our numerical results in section 5 and we conclude in section 6.

2 Left-Right Symmetric Model

The Left-Right Symmetric Model (LRSM) is based on the extended gauge group SU(2)L×
SU(2)R × U(1)Ỹ which involves additional charged and neutral gauge bosons [12]. The
electric charge can be also extended as Q = TL3+TR3+ Ỹ . Then, for the ordinary quarks
and leptons, the hypercharge gets a physical meaning, i.e. Ỹ = (B − L)/2 in this model.
The Lagrangian of LRSM is symmetric under parity, which is broken only spontaneously
by the non-zero vacuum expectation values of Higgs fields as shown in the following.

The left-handed fermions are SU(2)L doublets and SU(2)R singlets as in the SM while
the right-handed fermions are SU(2)R doublets and SU(2)L singlets. Thus, the charge
assignments (TL3, TR3, Ỹ ) of fermions yields:
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The symmetry is spontaneously broken in two steps

SU(2)L × SU(2)R × U(1)Ỹ → SU(2)L × U(1)Y → U(1)EM. (3)

The first step SU(2)R × U(1)Ỹ → U(1)Y is parity and B − L violating while the second
step is equivalent to the electroweak symmetry breaking. Let us first see the scalar
multiplet Φ, which triggers the second step symmetry breaking. Consulting the Yukawa
interaction of the form, QLΦQR, Φ should be a 2×2 unitary matrix. Moreover, this term
to be invariant under SU(2) transformation requires Φ to be bi-doublet scalar fields with
charge assignment:

Φ ≡
(
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2

ϕ−
1 ϕ0

2

)
∼
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,
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2
, 0

)
. (4)

The Φ field can not trigger the first step symmetry breaking because (i), Φ couples to
both of SU(2)L and SU(2)R and does not distinguish these two groups. Therefore Φ could
not break parity. (ii) Φ does not couple to U(1)Ỹ which would be unbroken and would
leave a massless gauge boson which is not observed. Thus, we must introduce another
scalar multiplets to break parity, namely the SU(2)R, and also U(1)Ỹ . In particular, the
scalar multiplet with charge B − L = 2 is attractive since it can generate right-handed
Majorana neutrino masses. As a result, we introduce the scalar triplet:

∆R ≡
(

δ+R/
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2 δ++

R

δ0R −δ+R/
√
2

)
∼ (0, 1, 2) ,
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Note that in this model another scalar field ∆L is also introduced in order to ensure the
parity conservation at a high energy before the symmetry is broken.

Now the symmetry breaking (3) can be undertaken by the non-zero vacuum expecta-
tion values (VEV). It is known that two of four complex phases can be eliminated and
remaining two phases are assigned conventionally to the VEV of Φ, ∆L and ∆R [6]:

〈Φ〉 =
(

κ 0
0 κ′eiω

)
, 〈∆L〉 =

(
0 0

vLeiθL 0

)
, 〈∆R〉 =

(
0 0
vR 0

)
, (5)

where, vL,R,κ and κ′ are real numbers. The symmetry breaking of SU(2)R × U(1)Ỹ →
U(1)Y is achieved at a high scale, i.e. multi-TeV, by non-zero 〈∆R〉. If vL %= vR, the left-
right symmetry is spontaneously broken. The electroweak symmetry breaking is triggered
by non-zero κ,κ′.

There are some hierarchies among the vacuum expectation values κ, κ′ and vL,R. First
of all, κ,κ′, vL & vR is needed to suppress the right-handed currents at low energy scales.
On the other hand, we would expect another hierarchy vL & vR in order to generate
the neutrino masses through the see-saw mechanism, namely vL ! a few MeV [13][14]
for vR ∼ multi-TeV. And also the constraints from electroweak ρ-parameter requires
vL ! 10GeV[15]. In this work, we shall use the limit vL → 0, which is used in literatures.
Note that the Higgs potential allows such a limit since vL ∝ κ2/vR [14]. Therefore the
phase θL has no physical consequence, while ω could trigger a spontaneous CP violation.
According to the hierarchy described above, we introduce an expansion parameter ε as:

ε = v/vR, with v2 = κ2 + κ′2

where v = 174 GeV is the standard electroweak symmetry breaking scale and vR =
O(TeV ) as discussed above. The ratio of κ and κ′ is defined by the usual parameter β,
i.e.

κ = v sin β, κ′ = v cos β, tan β =
κ

κ′ . (6)

Then tan β is a free parameter in this model. tanβ %= 1 is required by the difference of
the masses of the fermions. On the other hand, mass hierarchy mt ) mb implies large
tan β. However, the large value of tanβ as O(mt

mb
) in some literatures, is disfavored by the

electroweak precision observables [16]. 1 < tan β < 10 is used in [16]. In this work, we
take tanβ > 1.

In the low energy processes, the discrete left-right symmetry breaks down, then the
gauge coupling constants gL and gR are in general unequal, gL %= gR. As gL is the
coupling constant in the SM, the ratio of r ≡ gR/gL is not allowed to be arbitrarily
large, otherwise the interactions between right-handed gauge bosons and fermions would
become nonperturbative. Having the latest direct search result, r mW2 > 2.5 TeV [3], and
assuming vR to be muti-TeV or higher, we use r less than 2 in the following.

The charged gauge bosons are mixture of the mass eigenstates,
(

W−
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W−
R

)
=

(
cos ζ − sin ζeiw

sin ζe−iw cos ζ

)(
W−

1

W−
2

)
, (7)
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where the mass of W1 and W2 are

MW1 ≈
gLv√
2
(1− ε2 sin2 β cos2 β), MW2 ≈ gRvR(1 +

1

4
ε2), (8)

and the mixing angle

sin ζ ≈ gL
gR

|κ||κ′|
v2R

=
gL
gR

1

2
ε2 sin 2β ≈

M2
W1

M2
W2

gR
gL

sin 2β. (9)

The full Lagrangian for the neutral current and the charged current associated with gauge
bosons and Goldstone bosons in the LRSM are given in Appendix A.

In [6], it is shown that the masses of charged Higgs bosons and heavy flavor-changing
neutral Higgs bosons in this model are nearly the same. To the leading order, their masses
are equal to each other [16],

MH± = MH0 = MA0 . (10)

For simplicity, we use MH representing the masses of charged and heavy neutral Higgs.
The Lagrangians for the interactions between H0, H± and fermions are given in Appendix
A. As we see later-on, the tree-level flavor changing neutral current due to Higgs H0 and
A0 will affect the ∆F = 2 processes very much unless MH is sufficiently large [16]. In
this work, we consider the cases of MH = 20TeV and 50TeV. For such heavy mass, the
contributions on b → sγ and ∆F = 2 processes from charged Higgs in the loop diagrams
become negligibly small.

Concerning the CKM matrix, we have one for left-handed coupling V L
CKM and one

right-handed V R
CKM. We define V L

CKM by usual three rotation angles and one phase. In
this way, The right-handed CKM matrix V R

CKM is written by nine parameters remained
after imposing the unitarity condition.

There are many models on the right-handed CKM matrix. In most of the previous
works, the two quark mixing matrices are assumed to be related to each other. In the
so-called manifest Left-Right Symmetric Model[4], the right-handed matrix is exactly the
same as the left-handed one, V R

CKM = V L
CKM , while in the so-called pseudo-manifest Left-

Right Symmetric Model[5], the right-handed matrix is related to the left-handed one by
diagonal phase matrices Ku,d, V R

CKM = KuV L
CKMKd† . In the first scenario, VEV in the

Higgs sector are all real and then there are only explicit CP violations from the phases in
CKM matrices. In the second scenario, the Yukawa couplings are taken to be real which
leads to spontaneous CP violation from the complex Higgs VEV. Both scenarios confront
strong constraints from the mass difference and CP violation in K0 − K

0
system and

sin 2β [7]. More general right-handed CKM matrix have been studies in [6, 16, 17, 18].

Motivated by the K0 −K
0
mass difference, Langacker and Sankar proposed two simple

formulae of right-handed CKM matrix [18],

V R
(A) =




1 0 0
0 cα ±sα
0 sα ∓cα



 , V R
(B) =




0 1 0
cα 0 ±sα
sα 0 ∓cα



 , (11)

6

[Pati,Salam,1974;Mohapatra,Pati,1975;Mohapatra,Sejanovic,1975] 
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Example: Left-Right Symmetric Model

The Yukawa coupling between heavy neutral Higgs and quarks are [6]

LNH = (
√
2GF )

1/2

[
ūLi

(
VLMDV

†
R

)

ij

(
H0 − iA0

)
uRj + d̄Li

(
V †
LMUVR

)

ij

(
H0 + iA0

)
dRj

]

+h.c. (70)

The effective Hamiltonian of b → cc̄s in the LRSM at the tree level is

Htree =
g2L
2
V L∗
cs V L

cb

1

M2
1

c̄γµPLb · s̄γµPLc+
g2R
2
V R∗
cs V R

cb
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M2
2

c̄γµPRb · s̄γµPRc
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gLgR
2
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cb e
iω 1

M2
1

sin ζ c̄γµPLb · s̄γµPRc

+
gLgR
2

V L
cb (V

R
cs e

iω)∗
1

M2
1

sin ζ c̄γµPRb · s̄γµPLc, (71)

B Wilson coefficients C7γ and C ′
7γ

In the LRSM, the Wilson coefficients for the b → sγ processes are

C7γ(µR) =
1

2

[
cos2 ζASM(xt) + sin2 ζ

M2
1

M2
2

ASM(x̃t)

+
mt

mb

gR
gL

V R
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sin ζ cos ζeiw
(
ALR(xt)−

M2
1

M2
2

ALR(x̃t)
)

+
mc
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gR
gL

V L∗
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V L∗
ts V L

tb

sin ζ cos ζeiw
(
ALR(xc)−

M2
1

M2
2

ALR(x̃c)
)

+
mt

mb

tan 2β

cos 2β
eiw

V R
tb

V L
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A1
H(y) + tan2 2βA2

H(y)

]
(72)

C ′
7γ(µR) =
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]
(73)
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Future constraints on right-handed currents

B(B → Xsγ)exp =
(3.55± 0.24± 0.09)× 10−4 [HFAG(’10)]

ACP(B → KSπ0γ):
Sexp

KSπ0γ
= −0.15± 0.2 [HFAG(’10)]

σ(SKSπ0γ)LHCb ≈ 0.2 at 2 fb−1

σ(SKSπ0γ)SuperB ≈ 0.02 at 75 ab−1

σ(SKSπ0γ)Belle II ≈ 0.03 at 50 ab−1

λγ potential measurement from the
ω-distribution in B → (Kππ)K1(1270)γ:
σ(λγ)th ∼ 0.2

A(2)
T potential measurement from the

angular analysis of
B0 → K∗0(→ K−π+)&+&−:
σ(A(2)

T )LHCb ≈ 0.2 at 2 fb−1

A(im)
T potential measurement from

angular analysis of
B0 → K∗0(→ K−π+)&+&−:

Br!B!XsΓ"
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Is a right-handed contribution still 
allowed in b➔sγ from experiment?

MR

ML
!

C ′NP
7γ

CSM
7γ + CNP

7γ

We can write the amplitude including RH contribution as:

While the polarization 
measurement carries 

information on

M(b → sγ) " −4GF√
2

V ∗
tsVtb



(CSM
7γ + CNP

7γ )〈O7γ〉︸ ︷︷ ︸
∝ML

+C ′NP
7γ 〈O′

7γ〉︸ ︷︷ ︸
∝MR





By the way...

Br(B → XSγ) ∝ |CSM
7γ + CNP

7γ |2 + |C ′NP
7γ |2

Im
[C

′N
P

7
γ

/C
S
M

7
γ

]

Re[C ′NP
7γ /CSM

7γ ]

  (3.55 ± 0.24 ± 0.09)x10-4
HFAG

Here we assume 
C’7γNP≠0, C7γNP=0

-SUSY with δRL mass 
insertions

- SUSY-GUT models
-etc...

We have a constraint from inclusive branching ratio measurement



Figure 2: Plots of real part and imaginary part of C ′eff
7γ /Ceff

7γ in the LRM. The left and
right figures corresponds to the cases that the heavy Higgs mass at 20 and 50 TeV. The
white circle represents the constraint from the measured branching ratio of B → Xsγ with
three standard deviation, in the scenario assuming CNP

7γ = 0, i.e. C7γ = CSM
7γ , C ′NP

7γ ∈ C.
The points with different colors represent the cases that the mass of W2 is taken to be
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 and 5.5 TeV respectively, with the circles from the outside to
the inside in the figure. The points represents the solutions that are mainly constrained
by εK , ∆Ms and φs. |C ′

7γ/C7γ| would be larger as the mass of W2 decreases. We can find
that |C ′

7γ/C7γ| can be as large as 0.7 as MW2 = 1.5 TeV, 0.5 for MW2 = 2 TeV, and 0.3
for MW2 = 2.5 TeV. There are fewer points for the circles of lower mass of W2 than those
of higher mass, because of the more sever constraints for the lower mass cases, which
may be kind of fine-tuning. This also means that the possibility of C ′

7γ/C7γ localized in
the regions with few points is smaller than those with more points. The width of each
circle is from the several solutions of θ23. The few points excludes the constraint of
Br(B → Xsγ) in the right figure, because of the small contribution of CNP

7γ in the LRM
while in this figure it is assumed to be zero.

17

Real and Imaginary part of C ′
7γ/C7γ in the LRSM

|C ′
7γ/C7γ | can be 0.5 for MW2 = 2TeV, and 0.3 for MW2 = 2.5TeV, if

we fix gR/gL = 1 and tanβ = 10.

C ′
7γ(µb)

C7γ(µb)
∼ −1180

g2
R

g2
L

M2
W1

M2
W2

sin 2β V R∗
ts e−iω

Fu-Sheng Yu ( IHEP & LAL ) Photon Polarization in b → sγ in LRSM KEK FF-2013, March 13 17 / 31

Model parameters;  gR/gL=1, tan beta=10

Example: Left-Right Symmetric Model
E.K. C.D. Lu and F.S. Yu, JHEP (‘13)



How do we measure the polarization?!

‣Method 1: Time dependent CP asymmetry in 
Bd➔KSπ0γ Bs➔Κ+Κ-γ (called SKSπ0γ, SΚ+Κ-γ)

‣Method II: Transverse asymmetry in Bd➔K*l+l-

(called ΑΤ(2), ΑΤ(im))

‣Method III: B➔K1(➔Kππ)γ (called λγ)

‣Method IV: Λb➔Λ(*)γ, Ξb➔Ξ*γ ...  

Atwood et.al. PRL79

Kruger, Matias PRD71
Becirevic, Schneider, 

NPB854 

Gronau et al PRL88
E.K. Le Yaouanc, Tayduganov

PRD83

proposed methods

Gremm et al.’95, Mannel et 
al ’97, Legger et al ’07, 

Oliver et al ‘10



How to measure the polarization?

‣Method 1: Time dependent CP asymmetry in Bd➔KSπ0γ Bs➔Κ+Κ-γ 
(called SKSπ0γ, SΚ+Κ-γ)

‣Method II: Transverse asymmetry in Bd➔K*l+l-(called ΑΤ(2), ΑΤ(im))

‣Method III: B➔K1(➔Kππ)γ (called λγ)

‣Method IV: Λb➔Λ(*)γ, Ξb➔Ξ*γ ...  

proposed methods

φR = arg

[
C ′NP

7γ

CSM
7γ

]
SKSπ0γ =

2|CSM
7γ C ′NP

7γ |
|CSM

7γ |2 + |C ′NP
7γ |2

sin(2φ1 − φR)

A(2)
T (q2 = 0) =

2Re[CSM
7γ C ′NP∗

7γ ]
|CSM

7γ |2 + |C ′NP
7γ |2

A(im)
T (q2 = 0) =

2Im[CSM
7γ C ′NP∗

7γ ]
|CSM

7γ |2 + |C ′NP
7γ |2

λ =
|C ′NP

7γ |2 − |CSM
7γ |2

|C ′NP
7γ |2 + |CSM

7γ |2

Becirevic, EK, Le Yaouanc, Tayduganov in preparation

Assumption for γ*/Z penguin 
(C9,C10 contributions) necessary!
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φR = arg

[
C ′NP
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]
SKSπ0γ =

2|CSM
7γ C ′NP

7γ |
|CSM

7γ |2 + |C ′NP
7γ |2
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A(2)
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2Re[CSM
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A(im)
T (q2 = 0) =

2Im[CSM
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7γ |2 + |C ′NP
7γ |2

λ =
|C ′NP

7γ |2 − |CSM
7γ |2

|C ′NP
7γ |2 + |CSM

7γ |2

LHCb/Belle II

σSKsπγ(0.02)

LHCb
σAT2

(im)(0.2)

LHCb/Belle II

σλ(0.1-0.2)

Comparison of the three methods
Becirevic, EK, Le Yaouanc, Tayduganov in preparation



Comparison of the three methods
Becirevic, EK, Le Yaouanc, Tayduganov in preparation

Future constraints on right-handed currents

B(B → Xsγ)exp =
(3.55± 0.24± 0.09)× 10−4 [HFAG(’10)]

ACP(B → KSπ0γ):
Sexp

KSπ0γ
= −0.15± 0.2 [HFAG(’10)]

σ(SKSπ0γ)LHCb ≈ 0.2 at 2 fb−1

σ(SKSπ0γ)SuperB ≈ 0.02 at 75 ab−1

σ(SKSπ0γ)Belle II ≈ 0.03 at 50 ab−1

λγ potential measurement from the
ω-distribution in B → (Kππ)K1(1270)γ:
σ(λγ)th ∼ 0.2

A(2)
T potential measurement from the

angular analysis of
B0 → K∗0(→ K−π+)&+&−:
σ(A(2)

T )LHCb ≈ 0.2 at 2 fb−1

A(im)
T potential measurement from

angular analysis of
B0 → K∗0(→ K−π+)&+&−:
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Current bound
SKsπ0γ = -0.15±0.2
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Combining these two methods are very 
useful to pin down the right-handed current!
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Discussions



Interpreting Up-Down Asymmetry
Gronau, Grossman, Pirjol, Ryd PRL88(’01)

A =

∫ π/2
0 d|M|2dθ −

∫ π
π/2 d|M|2dθ

∫ π
0 d|M|2dθ

=
3
4
〈Im(n̂ · ( "J × "J∗))〉

〈| "J |2〉
|cR|2 − |cL|2

|cR|2 + |cL|2

Helicity amplitude 
of K1(1+)➔Kππ!J : λ : Polarization parameter 

related to C7, C7’ etc...

B
!K

K*"

""

K"

#$1

Friday, October 11, 13

A= - 0.085
     ±0.019(stat)
     ±0.003(syst)

LHCb-CONF-2013-009 

spin 0

Measuring the photon polarization using 

B!K1(1400)! (!K""!) 

Left

Right

!

"

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

# K1

Why do we use K1(1400)? 

K1(1400) decays to three bodies. 3 body decay

spin 1spin 1

* Most likely, K1 can decays through (Kπ)Sπ, too. 

J function

Source of imaginary part : 
overlap of two Breite-Wigner 

∫ 1
0 cos θ dΓ

d cos θ −
∫ 0
−1 cos θ dΓ

d cos θ∫ 1
−1 cos θ dΓ

d cos θ

Daum et al,  Nucl Phys, B187 (‘81)
Thesis of S. Akar (Babar)
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Angular & Dalitz 
distribution of K1 decay

Circularly-polarization 
measurement of γ 

We need detailed information on 
the hadronic amplitude of K1➔Kππ



Strong decay of K1➔Kππ

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)

B➔J/ΨK1, τ➔K1ν...
2. Model dependent extraction i.e. theoretical estimate

Assume K1➔Kππ comes from quasi-two-body 
decay, e.g. K1➔K*π, K1➔ρK, then, J function can be 
written in terms of:
‣4 form factors (S,D partial wave amplitudes) 
‣2 couplings (gK*Kπ, gρππ)
‣1 relative phase between two channel

Modeling J function:  A.Tayduganov, EK, Le Yaouanc PRD ‘03

J. Hebinger, EK, Le Yaouanc, A.Tayduganov, in preparation
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written in terms of:
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Simultaneous fit of B->J/psi K1 & B-> K1 gamma 
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Figure 3: Background-subtracted K+π−π+ invariant mass distribution, obtained using
the sPlot technique [24].
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Figure 4: Invariant Kππγ mass for B+ (left) and B− (right) candidates with the result of the
simultaneous fit overlaid. The signal component is shown in red (solid), combinatorial background
in green (dotted), missing pion background in black (dashed) and partially reconstructed
background in purple (dot-dashed).

sample. As expected, the up-down asymmetries obtained for B+ and B− are compatible,
−0.084± 0.026 and −0.086± 0.025, respectively, where uncertainties are statistical only.
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Observed K1 shape

Talk by S.Nishida at CKM2008 

[1+] K1(1270) [1+] K1(1400)???

[2+] K2*(1430)???

LHCb-CONF-2013-009 

[1-] K*(1680)???

124 partial wave analysis
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Figure 7.4: JP = 1+M = 0/1 wave intensities and the relative phase motion in
respect to the strongest intensity of the counter branch. Only the
1+ 0+ K∗(892)

[
0
1

]
π− wave intensity shows a clear double structure.

Other waves have only the same characteristic phase motion. The
K1(1400) resonance couples much stronger to the (K−π+)-isobar
branch then in published results by the ACCMOR collaboration.

7.4 mass independent fit results 125
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Figure 7.5: JP = 1+M = 0 D-waves showing a resonant behaviour around
1.8GeV/c2. The intensity distributions were well in agreement with
observations by the ACCMOR collaboration.20 C. Daum et al. / Diffractive production 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 

Figure 7.6: Left: the intensity over the K−π+π− mass of the two main JP = 1+

waves as published by the ACCMOR collaboration [1] in 1981. Right:
The relative phase motion between them. Axis titles are same like
in figure 7.4 and the upper figures can be directly compared. The
range of momentum transferred is 0.05 ! t ′ ! 0.7GeV2/c2. The
continuous line is a mass dependent fit to the data.
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Figure 3: Background-subtracted K+π−π+ invariant mass distribution, obtained using
the sPlot technique [24].
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Figure 4: Invariant Kππγ mass for B+ (left) and B− (right) candidates with the result of the
simultaneous fit overlaid. The signal component is shown in red (solid), combinatorial background
in green (dotted), missing pion background in black (dashed) and partially reconstructed
background in purple (dot-dashed).

sample. As expected, the up-down asymmetries obtained for B+ and B− are compatible,
−0.084± 0.026 and −0.086± 0.025, respectively, where uncertainties are statistical only.
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Figure 7.4: JP = 1+M = 0/1 wave intensities and the relative phase motion in
respect to the strongest intensity of the counter branch. Only the
1+ 0+ K∗(892)

[
0
1

]
π− wave intensity shows a clear double structure.

Other waves have only the same characteristic phase motion. The
K1(1400) resonance couples much stronger to the (K−π+)-isobar
branch then in published results by the ACCMOR collaboration.
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Figure 7.5: JP = 1+M = 0 D-waves showing a resonant behaviour around
1.8GeV/c2. The intensity distributions were well in agreement with
observations by the ACCMOR collaboration.20 C. Daum et al. / Diffractive production 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 
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Fig. 14. Results of partial-wave analysis in the Q region for 1 +0 + waves, 0.05 ~<lt'] ~< 0.7 GeV 2 (see 

caption to fig. 13). 

Figure 7.6: Left: the intensity over the K−π+π− mass of the two main JP = 1+

waves as published by the ACCMOR collaboration [1] in 1981. Right:
The relative phase motion between them. Axis titles are same like
in figure 7.4 and the upper figures can be directly compared. The
range of momentum transferred is 0.05 ! t ′ ! 0.7GeV2/c2. The
continuous line is a mass dependent fit to the data.
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✓The shape is obviously not Breit-Wigner 
type (I will explain why it is so and how we 
can deal with this). 
✓Then, using the Breit-Wigner may lead to a 
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estimate the production rate of K1(1270) 
and K1(1400). 
✓Estimate of K1(1400) pollution is essential 

for the polarization measurement. 
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2.8 Fit to the mKππ spectrum

2.8 Fit to the mKππ spectrum938

As already mentioned (see Sec. 2.5), not all the branching fractions of the contributions939

to the mKππ spectrum are known precisely. We perform a fit to the signal-TM sPlot of940

K+π−π+ invariant mass spectrum in order to extract their weights from data. The fit941

model4 of the mKππ distribution is described in Sec. 2.8.1, and the fit results are given942

in Sec. 2.8.2.943

2.8.1 Fit model944

We model the mKππ distribution as a coherent sum of five resonances described by945

Breit-Wigner (BW) line shapes. Because of the relatively low statistics (about 2500946

events) we assume that the fit would not be sensitive to subtle differences between a947

relativistic BW and a simpler BW line shape. The total PDF is defined as:948

|A(m; cj)|2 =
∑

J
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with949

BWJ
j (m) =

1

(m0
j )

2 −m2 − im0
jΓ

0
j

∣

∣

∣

∣

m=mKππ

, (2.12)

and950

cj = αj e
iφj . (2.13)

Table 2.20: Resonances entering in the mKππ fit model. The pole mass m0
j and width

Γ0
j are fixed to the values taken from Ref. [10].

JP Kres
Mass m0

j Width Γ0
j

(MeV/c2) (MeV/c2)

1+
K1(1270) 1272± 7 90± 20
K1(1400) 1403± 7 174± 13

1−
K∗(1410) 1414± 15 232± 21
K∗(1680) 1717± 27 322± 110

2+ K∗
2 (1430) 1425.6± 1.5 98.5± 2.7

951

The values of m0
j and Γ0

j are listed in Tab. 2.20. In Eq. 2.11 the index J runs over952

the different spin parity (JP ) and the index j runs over the kaonic resonances of same953

JP . In Eq. 2.13, the coefficients αj and φj correspond to the magnitude and phase954

of a given resonance. Table 2.20 details the different resonances entering in the mKππ955

4We implemented the mKππ fit model using the RooFit library.
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fit model. Six parameters vary in the fit: 4 magnitudes and 2 relative phases. The956

other parameters are fixed as references: 1 for the K1(1270) magnitude and 0 for957

the K1(1270) , K∗(1680) and K∗
2(1430) phases. It has been checked that the choice958

of references does not affect the results. The fit fractions FF(j) extracted for each959

kaonic resonance, as well as the interference fit fractions FF (j, k) between same JP
960

resonances, are calculated as:961

FF (j) =
|cj |2

〈

BWjBW
∗
j

〉

∑

µν(cµc
∗
ν) 〈BWµBW

∗
ν〉

; FF (j, k) =
2Re{(cjc∗k) 〈BWjBW

∗
k〉}

∑

µν(cµc
∗
ν) 〈BWµBW

∗
ν〉

, (2.14)

where the terms 〈BWµBW
∗
ν〉 are:962

〈BWµBW
∗
ν〉 =

∫∫

BWµBW
∗
νdm

2 . (2.15)

2.8.2 Fit results963

To extract the various Kres fit fractions we fit a binned distribution of signal-TM964

K+π−π+ invariant mass, using the model described in Sec. 2.8.1. The choice of fit-965

ting a binned distribution comes from the fact that the sWeights, used to retrieve the966

signal-TM mKππ distribution, can be negative, which introduces difficulties to perform967

an unbinned maximum likelihood fit. Figure 2.35 shows the fit projection as well as
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Figure 2.35: mKππ nominal fit projection (80 bins) and the residual distribution be-
tween the total PDF (blue solid curve) and the data points.

968

the residual distribution between the fitted PDF and the data points. Table 2.21 gives969
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6.6 Fit to the mKππ spectrum

Table 6.19: Results of the mKππ fit. The nominal fit is performed with 80 bins. The
quoted systematic errors take into account the uncertainties coming from various sources:
the bin size of the dataset, the fixed parameters in the mES-∆E-Fisher fit model and the
fixed parameters in themKππ fit model. The individual systematic uncertainties are added in
quadrature in order to obtain the total systematic errors. The dominant source of systematic
uncertainty comes from the fixed parameters of the resonance line shapes in the mKππ fit
(taken from Ref. [24]). Details on the values of the systematics errors from the various sources
considered are given in Sec. 6.9.1.

JP Kres Magnitude α Phase φ (rad.) Fit fraction

1+
K1(1270) 1.0 (fixed) 0.0 (fixed) 0.61+0.08

−0.05(stat.)
+0.05

−0.05(syst.)

K1(1400) 0.71± 0.10(stat.)+0.12
−0.08(syst.) 2.97± 0.17(stat.)+0.11

−0.12(syst.) 0.17+0.08
−0.05(stat.)

+0.05
−0.03(syst.)

1−
K∗(1410) 1.25± 0.16(stat.)+0.18

−0.13(syst.) 3.15± 0.12(stat.)+0.03
−0.02(syst.) 0.37+0.08

−0.07(stat.)
+0.06
−0.02(syst.)

K∗(1680) 2.02± 0.28(stat.)+0.32
−0.21(syst.) 0.0 (fixed) 0.43+0.05

−0.04(stat.)
+0.09
−0.06(syst.)

2+ K∗
2 (1430) 0.33± 0.09(stat.)+0.07

−0.14(syst.) 0.0 (fixed) 0.06+0.04
−0.03(stat.)

+0.04
−0.05(syst.)

Sum of fit fractions 1.64+0.18
−0.14(stat.)

+0.14
−0.07(syst.)

Interferences
JP = 1+ : {K1(1270) –K1(1400)} −0.35+0.10

−0.16(stat.)
+0.05
−0.06(syst.)

JP = 1− : {K∗(1410) –K∗(1680)} −0.29+0.08
−0.11(stat.)

+0.06

−0.12(syst.)

Line-shape parameters

Kres Mean (GeV/c2) Width (GeV/c2)

K1(1270) 1.272 (fixed) 0.099± 0.006(stat.)+0.004
−0.006(syst.)

K∗(1680) 1.717 (fixed) 0.356± 0.050(stat.)+0.045

−0.026(syst.)

always converge to the same likelihood solution. We further compare in Tab. 6.20 the ra-
tio of the FFs extracted from the fit to the ratio of previously-used MC weights (mainly
taken from theoretical estimations). The extracted FF ratio FF(K∗

2(1430))/FF(K1(1270))
is compatible with the unique MC weight ratio extracted from existing measurements (i.e.
B(B+ → K∗

2(1430)
+γ)/B(B+ → K1(1270)+γ), where the branching fractions are taken from

Ref. [24]). The main difference concerns the K∗(1680) FF for which the initially-estimated
MC weight is widely underestimated. Nevertheless, the result obtained by the present analy-
sis is compatible with existing measurements: from Ref. [24] we have
B(B+ → K∗(1680)+γ) < 1.9× 10−3 and B(B+ → K1(1270)+γ) = (4.3± 1.3)× 10−5.

Using efficiency-correction factors for each resonance, we calculate new MC weights (see
column “Fit based MC weight” in Tab. 6.20) to be used to construct the appropriate signal-
MC cocktail for the mKπ fit (Sec. 6.7) and in the B0 → K0

Sρ
0γ analysis.

We also checked the dependance of these results in regard to the values of initial cocktail
weights. Since the cocktail weights only affect the values of the signal PDFs parameters,
we re-extract the values of these parameters for all the discriminating variables using the
new cocktail weights from the results of the fit to mKππ. Table 6.21 gives the values of

121
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Daum’s formalism - K-matrix -

62 Strong interaction decays of the K1-mesons

• One resonance decaying to one channel

Consider a resonance a′ that couples to one channel i:

1

2

Πa′a′

1

2

i i

Using the definition (3.22), the K-matrix for the elastic scattering is given by

K =
f 2

a′1

ma′ −m
(3.24)

One can easily obtain the transition amplitude

T =
f 2

a′i

ma′ −m− ifa′iρii(m)
=

f 2
a′i

ma′ −m− iΓa′ (m)
2

(3.25)

which is equivalent to the non-relativistic Breit-Wigner parametrization of Eq. (3.15).

• Two resonances decaying to one channel

Consider again an elastic scattering at mass m, but suppose that there exist two
resonances with masses ma′ and mb′ coupling to channel i:

1

2

Πa′a′

1

2

i i +

1

2

Πb′b′

1

2

i i

In this case the K-matrix is

K =
f 2

a′i

ma′ −m
+

f 2
b′i

mb′ −m
(3.26)

Thus, the transition amplitude is given by

T =
f 2

a′i

ma′ −m− iΓa′ (m)
2 − iΓb′ (m)

2
ma′−m
mb′−m

+
f 2

b′i

mb′ −m− iΓb′ (m)
2 − iΓa′ (m)

2
mb′−m
ma′−m

(3.27)

If ma′ and mb′ are quite far away from each other relative to the widths, then the
dominating contribution is either from the first or the second resonance depending
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3.3.1 The K-matrix formalism 61

From the unitarity of the S-matrix

S ≡ 1 + 2iρ
1
2 Tρ

1
2 (3.16)

one gets

T − T † = 2iT †ρT = 2iTρT † (3.17)

where the diagonal matrix ρij(m) is the phase space factor which is discussed in detail
later in this section. In terms of the inverse operators Eq. (3.17) can be rewritten as

(T †)−1 − T−1 = 2iρ (3.18)

One can further transform this expression into

(T−1 + iρ)† = T−1 + iρ (3.19)

Using the definition of the K-matrix

K−1 ≡ T−1 + iρ (3.20)

one can easily find from Eq. (3.19), (3.20) that the K-operator is Hermitian, i.e.

K = K† (3.21)

From the time reversal invariance of S and T it follows that K must be symmetric, i.e.
the K-matrix can be chosen to be real and symmetric. Resonances should appear as a
sum of poles in the K-matrix. In the approximation of resonance dominance one gets
therefore

Kij =
∑

a′

fa′ifa′j

ma′ −m
(3.22)

where the sum on a′ goes over the number of poles with masses ma′ . In the common
approximation in the resonance theory, the couplings fa′i are taken to be real.

The partial and total K-matrix widths can be defined as

Γa′i(m) = 2f 2
a′iρii(m) (3.23a)

Γa′(m) =
∑

i

Γa′i(m) (3.23b)

Note that the K-matrix width does not need to be identical with the width which is
observed in experiment nor with the width of the T -matrix pole in the complex energy
plane.

For the illustration, we give two simple examples.
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K-matrix formalism

•Similar to Breit-Wigner but the 
width part is sum of partial widths.
•Thus, the mass and the width in 
the K-matrix formalism depend on 
the energy different from Breit-
Wigner form.

Partial width (final state=i)
Total width

ρij is the phase space factor. 
This shows that when, the phase space is 
limited for a given channel, we see the distortion 
in the total decay width. 


