New physics searches via photon polarization measurements of $b \rightarrow s \gamma$

Emi KOU (LAL/IN2P3-Orsay)

in collaboration with A.Tayduganov, A.LeYaouanc, D. Becirevic F.-S. Yu \& J. Hebinger

Flavour of new physics in b-> s transitions

The $b \rightarrow s \gamma$ processes in SM

The $b \rightarrow s y$ process is a good probe of fundamental properties of SM as well as BSM (CKM, top mass, new particle mass etc..) Especially, the $b \rightarrow s y$ process has a particular structure in SM.
The requirement of the chirality flip leads to a left-photon dominance.

$$
m_{b} \bar{s} \sigma_{\mu \nu} q^{\nu} b_{R}
$$

$$
m_{s} \bar{s}_{R} \sigma_{\mu \nu} q^{\nu} b_{L}
$$

In the
SM, the opposite chirality is suppressed by $\mathrm{ms} / \mathrm{mb}$

The $b \rightarrow s \gamma$ processes in SM

DThe $b \rightarrow s \gamma$ process is a good probe of fundamental properties of SM as well as BSM (CKM, top mass, new particle mass etc..) Especially, the $b \rightarrow s \gamma$ process has a
 particular structure in SM.
The requirement of the chirality flip leads to a left-photon dominance.
 W-boson coupling left-handedly, leads to the circular polarization of photon

La $\quad b s \gamma_{L}$ (left-handed polarization) \& $\bar{b} \rightarrow \bar{s} \gamma_{R}$ (right-handed polarization)

The $b \rightarrow s \gamma$ processes in SM

The $b \rightarrow s \gamma$ process is a good probe of fundamental properties of SM as well as BSM (CKM, top mass, new particle mass etc..) Especially, the $b \rightarrow s \gamma$ process has a particular structure in SM.
The requirement of the chirality flip leads to a left-photon dominance.

$$
m_{b} \bar{s}_{L} \sigma_{\mu \nu} q^{\nu} b_{R}
$$

W-boson coupling left-handedly, leads to the circular polarization of nhaton

However, this left-handedness of the polarization of $b \rightarrow s \gamma$ has never been confirmed at a high precision yet!!

Right-handed: which NP model?

What types of new physics models? For example, models with right-handed neutrino, or custodial symmetry in general induces the right handed current.
Left-Right symmetric
model $\left(W_{R}\right)$

Blanke et al. JHEP1203

Girrbach et al. JHEP1106

Which flavour structure?

The models that contain new particles which change the chirality inside of the $b \rightarrow$ sy loop can induce a large chiral enhancement!

Left-Right symmetric model: $\mathrm{mt} / \mathrm{mb}$
Cho, Misiak, PRD49, '94 Babu et al PLB333 ‘94

SUSY with $\delta_{R L}$ mass insertions: msusy/mb
Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 ‘04

Example: Left-Right Symmetric Model

Extended gauge group

$$
S U(2)_{L} \times S U(2)_{R} \times U(1)_{\tilde{Y}} \rightarrow S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{\mathrm{EM}} .
$$

[Pati,Salam, 1974;Mohapatra,Pati, 1975;Mohapatra, Sejanovic, 1975]
Two step Symmetry breakings
$\langle\Phi\rangle=\left(\begin{array}{cc}\kappa & 0 \\ 0 & \kappa^{\prime} e^{i \omega}\end{array}\right), \quad\left\langle\Delta_{L}\right\rangle=\left(\begin{array}{cc}0 & 0 \\ v_{L} e^{i \theta_{L}} & 0\end{array}\right), \quad\left\langle\Delta_{R}\right\rangle=\left(\begin{array}{cc}0 & 0 \\ v_{R} & 0\end{array}\right)$
$\kappa, \kappa^{\prime}, v_{L} \ll v_{R} \quad$ Right handed mass very large
W boson with left- and right-handed couplings (W_{L} \& W_{R})

$$
\begin{aligned}
& \binom{W_{L}^{-}}{W_{R}^{-}}=\left(\begin{array}{cc}
\cos \zeta & -\sin \zeta e^{i w} \\
\sin \zeta e^{-i w} & \cos \zeta
\end{array}\right)\binom{W_{1}^{-}}{W_{2}^{-}} \\
& \sin \zeta \approx \frac{g_{L}}{g_{R}} \frac{|\kappa|\left|\kappa^{\prime}\right|}{v_{R}^{2}}=\frac{g_{L}}{g_{R}} \frac{1}{2} \epsilon^{2} \sin 2 \beta \approx \frac{M_{W_{1}}^{2}}{M_{W_{2}}^{2}} \frac{g_{R}}{g_{L}} \sin 2 \beta .
\end{aligned}
$$

Mass eigenstates $W_{1} \& W_{2}$ are a mixture of left and right W's

Example: Left-Right Symmetric Model

SM-like left handed-photon contribution

Chiral enhancement term

Example: Left-Right Symmetric Model

Right handed-photon contribution

$$
C_{7 \gamma}^{\prime}\left(\mu_{R}\right)=\frac{1}{2}\left[\frac{g_{R}^{2}}{g_{L}^{2}} \frac{V_{t s}^{R *} V_{t b}^{R}}{V_{t s}^{L *} V_{t b}^{L}}\left(\sin ^{2} \zeta A_{\mathrm{SM}}\left(x_{t}\right)+\cos ^{2} \zeta \frac{M_{1}^{2}}{M_{2}^{2}} A_{\mathrm{SM}}\left(\tilde{x}_{t}\right)\right)\right.
$$

Chiral enhancement term

By the way...

Is a right-handed contribution still allowed in $b \rightarrow s \gamma$ from experiment?

We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\alpha \mathcal{M}_{L}}+\underbrace{C_{7 \gamma}^{\mathrm{NP}}\left\langle\mathcal{O}_{7 \gamma}^{\prime}\right\rangle}_{\alpha \mathcal{M}_{R}}]
$$

We have a constraint from inclusive branching ratio measurement

Example: Left-Right Symmetric Model

E.K. C.D. Lu and F.S.Yu, JHEP ('I3)

$$
\frac{C_{7 \gamma}^{\prime}\left(\mu_{b}\right)}{C_{7 \gamma}\left(\mu_{b}\right)} \sim-1180 \frac{g_{R}^{2}}{g_{L}^{2}} \frac{M_{W_{1}}^{2}}{M_{W_{2}}^{2}} \sin 2 \beta V_{t s}^{R *} e^{-i \omega}
$$

Model parameters; $g_{R} / g_{L}=I$, tan beta $=10$

How do we measure the polarization?!

proposed methods

- Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{s} \pi^{0} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma\left(\right.$ called $\left.S_{K s \pi 0 \gamma}, S_{K+K-\gamma}\right)$
- Method II:Transverse asymmetry in $\left.\mathrm{B}_{d} \rightarrow \mathrm{~K}^{*} I^{+}\right|^{-}$ (called $\mathrm{A}^{(2)}, \mathrm{A}^{\left({ }^{(i m)}\right)}$
\rightarrow Method III: $B \rightarrow K_{I}(\rightarrow K \pi T) \gamma\left(\right.$ called $\left.\lambda_{Y}\right)$
- Method IV: $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma, \Xi_{b} \rightarrow \Xi^{*} \gamma \ldots$

Atwood et.al. PRL79

Kruger, Matias PRD7I
Becirevic, Schneider,
NPB854
Gronau et al PRL88
E.K. Le Yaouanc, Tayduganov PRD83
Gremm et al.'95, Mannel et al '97, Legger et al '07, Oliver et al'IO

How to measure the polarization?

Becirevic, EK, Le Yaouanc, Tayduganov in preparation proposed methods
\rightarrow Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{s} \pi^{0} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{K S \pi} \mathrm{~T}_{0}, \mathrm{~S}_{K+K-\gamma}$)

$$
S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SMM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}} \sin \left(2 \phi_{1}-\phi_{R}\right) \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
$$

\rightarrow Method II:Transverse asymmetry in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mathrm{I}^{+} \mathrm{I}^{(\text {called }} \mathrm{AT}^{(2)}, \mathrm{A}^{\left({ }^{(i m)}\right)}$

$$
\mathcal{A}_{T}^{(2)}\left(q^{2}=0\right)=\frac{2 \operatorname{Re}\left[C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP} *}\right]}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{\gamma \gamma}^{\prime \mathrm{NP}}\right|^{2}} \quad \mathcal{A}_{T}^{(i m)}\left(q^{2}=0\right)=\frac{2 \operatorname{Im}\left[C_{\gamma \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP} *}\right]}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}}
$$

\rightarrow Method III: $\mathrm{B} \rightarrow \mathrm{K}_{1}(\rightarrow \mathrm{~K} \pi \pi) \gamma\left(\right.$ called $\left.\lambda_{Y}\right) \quad\left(C_{9}, C_{10}\right.$ contributions) necessary!

$$
\lambda=\frac{\left|C_{\gamma \gamma}^{\prime \mathrm{NP}}\right|^{2}-\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}}{\left|C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}}
$$

- Method IV: $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma, \Xi_{b} \rightarrow$ E* $^{*} \gamma \ldots$

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov in preparation proposed methods

- Method I: Time dependent CP asymmetry in $B_{d} \rightarrow K_{s} \pi^{0} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{\mathrm{Ks} \pi \mathrm{H}_{\gamma}}, \mathrm{S}_{\mathrm{K}+\mathrm{K}-\gamma}$)

$$
\begin{aligned}
& S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|} \begin{array}{c}
\mathrm{LHCb} / \text { Belle II } \\
\sigma_{\text {SksTr }}(0.02)
\end{array} \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
\end{aligned}
$$

\rightarrow Method II:Transverse asymmetry in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*}{ }^{+}+\mathrm{I}$ (called $\mathrm{A}_{T^{(2)}}, \mathrm{A}_{\left.T^{(i m)}\right)}$)
\rightarrow Method III: $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma\left(\right.$ called $\left.\lambda_{Y}\right)$
${ }^{L H C b / B e l l e ~ I I I}$
$\sigma_{\lambda}(0.1-0.2)^{2}$

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov in preparation

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov JHEP ('I 2)

Comparison of the three methods

Becirevic, EK, Le Yaouanc,Tayduganov JHEP (‘I 2)

Method III

Expected constraint from λ measurement with 10% precision

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov JHEP ('I2)
Method I \& Method III

Combining these two methods are very -1 useful to pin down the right-handed current! $\mathrm{Re}\left[\mathrm{C}_{7}^{\prime \mathrm{Nen}} / \mathrm{C}_{7 \gamma}^{\mathrm{en}}\right]$

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov JHEP ('I2)

Method II

Expected constraint from
$\mathrm{AT}^{(2)}, \mathrm{A}^{(\mathrm{im})}$ measurement with 10% precision

Assumption for γ^{*} / Z penguin (C_{9}, C_{10} contributions) necessary!

Discussions

Interpreting Up-Down Asymmetry

Gronau, Grossman, Pirjol, Ryd PRL88('O I)

$$
\begin{aligned}
\mathcal{A} & =\frac{\int_{0}^{1} \cos \theta \frac{d \Gamma}{d \cos \theta}-\int_{-1}^{0} \cos \theta \frac{d \Gamma}{d \cos \theta}}{\int_{-1}^{1} \cos \theta \frac{d \Gamma}{d \cos \theta}} \\
& =\frac{3}{4} \frac{\left\langle\operatorname{Im}\left(\hat{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right)\right\rangle}{\left.\left.\langle | \vec{J}\right|^{2}\right\rangle} \frac{\left|c_{R}\right|^{2}-\left|c_{L}\right|^{2}}{\left|c_{R}\right|^{2}+\left|c_{L}\right|^{2}}
\end{aligned}
$$

$$
A=-0.085
$$

$$
\pm 0.019 \text { (stat) }
$$

$$
\pm 0.003 \text { (syst) }
$$

$\vec{J}:$ Helicity amplitude $\quad \lambda$: Polarization parameter
$J:$ of $\mathrm{K}_{1}\left(\mathrm{I}^{+}\right) \rightarrow \mathrm{K} \pi$ т - related to C7, C7’ etc...

Source of imaginary part : overlap of two Breite-Wigner

Daum et al, Nucl Phys, Bl 87 ('8I) Thesis of S. Akar (Babar)

* Most likely, KI can decays through (Kп) sm, too.

Interpreting Up-Down Asymmetry

Gronau, Grossman, Pirjol, Ryd PRL88('O I)

Source of imaginary part : overlap of two Breite-Wigner

Daum et al, Nucl Phys, BI 87 (81) Thesis of S. Akar (Babar)

* Most likely, K। can decays through (Kп) sTr, too.

Strong decay of $K_{1} \rightarrow K \pi \pi$

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)
J. Hebinger, EK, Le Yaouanc, A.Tayduganov, in preparation

$$
B \rightarrow J / \Psi \mathrm{K}_{1}, \mathrm{~T} \rightarrow \mathrm{~K}_{1} \mathrm{~V} \ldots
$$

2. Model dependent extraction i.e. theoretical estimate Modeling J function: A.Tayduganov, EK, Le Yaouanc PRD ‘03

Assume $K_{1} \rightarrow K \pi \pi$ comes from quasi-two-body decay, e.g. $K_{1} \rightarrow K^{*} \pi, K_{1} \rightarrow \rho K$, then, J function can be written in terms of:
-4 form factors (S,D partial wave amplitudes)

- 2 couplings ($\mathrm{g}_{\kappa^{*} \kappa_{\pi},} \mathrm{g}_{\rho \pi \pi}$)
-1 relative phase between two channel

Strong decay of $K_{1} \rightarrow K \pi \pi$

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)

Simultaneous fit of B->J/psi K1 \& B-> K1 gamma
2. M

$$
\begin{aligned}
\mathcal{A} & =\frac{\int_{0}^{\pi / 2} d|\mathcal{M}|^{2} d \theta-\int_{\pi / 2}^{\pi} d|\mathcal{M}|^{2} d \theta}{\int_{0}^{\pi} d|\mathcal{M}|^{2} d \theta} \\
& =\frac{3}{4} \frac{\left.\left\langle\operatorname{Im}\left(\hat{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right)\right\rangle\right\rangle}{\left.\left.\langle | \vec{J}\right|^{2}\right\rangle} \frac{\left|c_{R}\right|^{2}-\left|c_{L}\right|^{2}}{\left|c_{R}\right|^{2}+\left|c_{L}\right|^{2}}
\end{aligned}
$$

$\rightarrow 2$ couplings ($\mathrm{g}^{*} \mathrm{~K}_{\mathrm{K}}, \mathrm{g}_{\rho \pi \pi}$)
1 relative phase between two channel

Observed Kı shape

Babar‘l4

norn
of e ε
reso: are (from

Talk by S.Nishida at CKM2008

Observed Kı shape

LHCb-CONF-2013-009
Babar'l4

A

COMPASS‘I2
I+] Kı(1400)???
\checkmark The shape is obviously not Breit-Wigner type (I will explain why it is so and how we can deal with this).
\checkmark Then, using the Breit-Wigner may lead to a wrong conclusions when we want to estimate the production rate of $\mathrm{KI}(1270)$ and $\mathrm{KI}(1400)$.
\checkmark Estimate of $\mathrm{KI}(1400)$ pollution is essential for the polarization measurement.

产 ${ }_{80}$ E-"'r SCF
$80-$ SCF

ACMMOR ‘8।

norn
of $e \varepsilon$
reso: are from

Talk by S.Nishida at CKM2008

Example of Babar

$|$| $\left\|A\left(m ; c_{j}\right)\right\|^{2}=\sum_{J}\left\|\sum_{j} c_{j} \mathrm{BW}_{j}^{J}(m)\right\|_{m=m_{K \pi \pi}}^{2}$ |
| :---: |
| $\mathrm{BW}_{j}^{J}(m)=\left.\frac{1}{\left(m_{j}^{0}\right)^{2}-m^{2}-i m_{j}^{0} \Gamma_{j}^{0}}\right\|_{m=m_{K \pi \pi}}$, |
| $c_{j}=\alpha_{j} e^{i \phi_{j}}$. |

J^{P}	$K_{\text {res }}$	Mass m_{j}^{0} $\left(\mathrm{MeV} / c^{2}\right)$	Width Γ_{j}^{0} $\left(\mathrm{MeV} / c^{2}\right)$
	$K_{1}(1270)$	1272 ± 7	90 ± 20
	$K_{1}(1400)$	1403 ± 7	174 ± 13
1^{-}	$K^{*}(1410)$	1414 ± 15	232 ± 21
	$K^{*}(1680)$	1717 ± 27	322 ± 110
2^{+}	$K_{2}^{*}(1430)$	1425.6 ± 1.5	98.5 ± 2.7

Daum's formalism - K-matrix -

K-matrix formalism

- Two resonances decaying to one channel

Consider again an elastic scattering at mass m, but suppose that there ex resonances with masses $m_{a^{\prime}}$ and $m_{b^{\prime}}$ coupling to channel i :

In this case the K-matrix is

$$
K=\frac{f_{a^{\prime} i}^{2}}{m_{a^{\prime}}-m}+\frac{f_{b^{\prime} i}^{2}}{m_{b^{\prime}}-m}
$$

Thus, the transition amplitude is given by

$$
T=\frac{f_{a^{\prime} i}^{2}}{m_{a^{\prime}}-m-i \frac{\Gamma_{a^{\prime}}}{2}-i \frac{\Gamma_{b^{\prime}}(m)}{2} \frac{m_{a^{\prime}}-m}{m_{b^{\prime}}-m}}+\frac{f_{b^{\prime} i}^{2}}{m_{b^{\prime}}-m-i \frac{\Gamma_{b^{\prime}}(m)}{2}-i \frac{\Gamma_{a^{\prime}}(m)}{2} \frac{m_{b^{\prime}}-m}{m_{a^{\prime}}-m}}
$$

$$
\Gamma_{a^{\prime} i}(m)=2 f_{a^{\prime} i}^{2} \rho_{i i}(m) \quad \text { Partial width (final state=i) }
$$

$$
\Gamma_{a^{\prime}}(m)=\sum \Gamma_{a^{\prime} i}(m) \quad \begin{aligned}
& \text { Partal widtt } \\
& \text { Total width }
\end{aligned}
$$

ρ_{ij} is the phase space factor.
This shows that when, the phase space is limited for a given channel, we see the distortion in the total decay width.

