Form factors for $B \rightarrow V$ decays: updated LCSR results and related fits

Aoife Bharucha
Flavor of New Physics in $b \rightarrow s$ transitions Institut Henri Poincaré, $3^{\text {rd }}$ June 2014

Work in progress with David Straub and Roman Zwicky

Why calculate form factors for exclusive $B \rightarrow V$?

 and why is an update required?- Exclusive decays, to which the LHC is more sensitive (e.g. $B \rightarrow K^{*}$), require form factors: non-perturbative quantities
- Need accurate FFs to detect NP via $B \rightarrow K^{*}$ or $B_{s} \rightarrow \phi$ or measure $\left|V_{u b}\right|$ via $B \rightarrow \rho, B_{s} \rightarrow K^{*}$
- LCSR^{1} at low q^{2}, Lattice ${ }^{2}$ at high q^{2}
- Best coverage in q^{2} : fit to LCSR and Lattice using e.g. series expansion, coefficients satisfy dispersive bounds. ${ }^{3}$

Critical point: correlated errors between FFs not yet available...

[^0]
Form Factor Definitions

The standard basis
$V\left(q^{2}\right), A_{0-3}\left(q^{2}\right), T_{1-3}\left(q^{2}\right)$ conventionally defined: $\left(\right.$ note $\left.A_{0}(0)=A_{3}(0), T_{1}(0)=T_{2}(0)\right)$

$$
\begin{aligned}
\langle V(k, \varepsilon)| \bar{q} \gamma_{\mu} b|\bar{B}(p)\rangle= & i \epsilon_{\mu \nu \rho \sigma} \varepsilon^{* \nu}(k) p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{V}}, \\
\langle V(k, \varepsilon)| \bar{q} \gamma_{\mu} \gamma_{5} b|\bar{B}(p)\rangle= & -\varepsilon_{\mu}^{*}(k)\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)+(p+k)_{\mu}\left(\varepsilon^{*}(k) \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{V}} \\
& +q_{\mu}\left(\varepsilon^{*}(k) \cdot q\right) \frac{2 m_{V}}{q^{2}}\left(A_{3}\left(q^{2}\right)-A_{0}\left(q^{2}\right)\right), \\
\langle V(k, \varepsilon)| \bar{q} \sigma_{\mu \nu} q^{\nu} b|\bar{B}(p)\rangle= & i \epsilon_{\mu \nu \rho \sigma} \varepsilon^{* \nu} p^{\rho} k^{\sigma} 2 T_{1}\left(q^{2}\right), \\
\langle V(k, \varepsilon)| \bar{q} \sigma_{\mu \nu} q^{\nu} \gamma_{5} b|\bar{B}(p)\rangle= & T_{2}\left(q^{2}\right)\left(\varepsilon_{\mu}^{*}(k)\left(m_{B}^{2}-m_{V}^{2}\right)-\left(\varepsilon^{*}(k) \cdot q\right)(p+k)_{\mu}\right) \\
& +T_{3}\left(q^{2}\right)\left(\varepsilon^{*}(k) \cdot q\right)\left(q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}(2 p-q)_{\mu}\right),
\end{aligned}
$$

Due to EOM for quarks, $A_{3}\left(q^{2}\right)=\frac{m_{B}+m_{V}}{2 m_{V}} A_{1}\left(q^{2}\right)-\frac{m_{B}-m_{V}}{2 m_{V}} A_{2}\left(q^{2}\right)$,
\Rightarrow Only 7 independent FFs

Definition of Helicity Amplitudes

Vector current

$$
\mathcal{B}_{V, \sigma}\left(q^{2}\right)=\sqrt{\frac{q^{2}}{\lambda}} \sum_{\varepsilon(k)} \varepsilon_{\sigma}^{* \mu}(q)\langle V(k, \varepsilon(k))| \bar{q} \gamma_{\mu}\left(1-\gamma^{5}\right) b|\bar{B}(p)\rangle
$$

with

$$
\begin{aligned}
& \mathcal{B}_{V, 0}\left(q^{2}\right)=\frac{\left(m_{B}+m_{V}\right)^{2}\left(m_{B}^{2}-m_{V}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)-\lambda A_{2}\left(q^{2}\right)}{2 m_{V} \sqrt{\lambda}\left(m_{B}+m_{V}\right)}, \\
& \mathcal{B}_{V, t}\left(q^{2}\right)=A_{0}\left(q^{2}\right), \\
& \mathcal{B}_{V, 1}\left(q^{2}\right) \equiv-\frac{\mathcal{B}_{V,-}-\mathcal{B}_{V,+}}{\sqrt{2}}=\frac{\sqrt{2 q^{2}}}{m_{B}+m_{V}} V\left(q^{2}\right), \\
& \mathcal{B}_{V, 2}\left(q^{2}\right) \equiv-\frac{\mathcal{B}_{V,-}+\mathcal{B}_{V,+}}{\sqrt{2}}=\frac{\sqrt{2 q^{2}}\left(m_{B}+m_{V}\right)}{\sqrt{\lambda}} A_{1}\left(q^{2}\right)
\end{aligned}
$$

Definition of Helicity Amplitudes

Tensor current

$$
\begin{aligned}
& \mathcal{B}_{T, \sigma}\left(q^{2}\right)=\sqrt{\frac{1}{\lambda}} \sum_{\varepsilon(k)} \varepsilon_{\sigma}^{* \mu}(q)\langle V(k, \varepsilon(k))| \bar{q} \sigma_{\mu \alpha} q^{\alpha}\left(1+\gamma^{5}\right) b|\bar{B}(p)\rangle \\
& \mathcal{B}_{T, 0}\left(q^{2}\right)=\frac{\sqrt{q^{2}}\left(m_{B}^{2}+3 m_{V}^{2}-q^{2}\right)}{2 m_{V} \sqrt{\lambda}} T_{2}\left(q^{2}\right)-\frac{\sqrt{q^{2} \lambda}}{2 m_{V}\left(m_{B}^{2}-m_{V}^{2}\right)} T_{3}\left(q^{2}\right) \\
& \mathcal{B}_{T, 1}\left(q^{2}\right)=-\frac{\mathcal{B}_{V,-}-\mathcal{B}_{V,+}}{\sqrt{2}}=\sqrt{2} T_{1}\left(q^{2}\right), \\
& \mathcal{B}_{T, 2}\left(q^{2}\right)=-\frac{\mathcal{B}_{V,-}+\mathcal{B}_{V,+}}{\sqrt{2}}=\frac{\sqrt{2}\left(m_{B}^{2}-m_{V}^{2}\right)}{\sqrt{\lambda}} T_{2}\left(q^{2}\right) .
\end{aligned}
$$

Calculating the FFs at low q^{2} ?

Non-perturbative techniques

- Appropriate method for low q^{2} is LCSR
- However, using full form factors from LCSR correlations in errors between form factors not available.
- Many people resorting to using soft form factors with corrections in order to include correlations ${ }^{4}$
- This can be improved if correlated FFs available: Our Aim
- Can fit LCSR and Lattice: Results valid in both low and high q^{2} regimes

Burning question: how does one calculate FFs in LCSR? ${ }^{5}$

[^1]
What is LCSR?

taking the example of f_{+}for $B \rightarrow \pi$

On one hand....

In physical region, correlator dominated by B pole:

$$
\begin{aligned}
& \Pi_{\mu}=i m_{b} \int d^{D} x e^{-i p_{B} \cdot \times}\left\langle\left(\langle\pi(p)| T\left\{\bar{u}(0) \gamma_{\mu} b(0)\right)\right.\right. \\
&=\left(p_{B}+p\right)_{\mu} \Pi_{+}\left(p_{B}^{2}, q^{2}\right)+\left(p_{B}-p\right)_{\mu} \Pi_{-}\left(p_{B}^{2}, \lambda^{2}\right) .
\end{aligned}
$$

into

$$
\Pi_{+}\left(p_{B}^{2}, q^{2}\right)=f_{B} m_{B}^{2} \frac{f_{+}\left(q^{2}\right)}{m_{B}^{2}-p_{B}^{2}}+\int_{s>m_{B}^{2}} d s \frac{\rho_{\mathrm{had}}}{s-p_{B}^{2}},
$$

($\rho_{\text {had }}$ is spectral density of the higher-mass hadronic states)

What is LCSR?

on the other hand..

In Euclidean region ($p_{B}^{2}-m_{B}^{2}$ is large and negative): light-cone expand about $x^{2}=0^{6}$

$$
\Pi_{+}\left(p_{B}^{2}, q^{2}\right)=\sum_{n} \int d u \mathcal{T}_{+}^{(n)}\left(u, p_{B}^{2}, q^{2}, \mu^{2}\right) \phi^{(n)}\left(u, \mu^{2}\right)=\int d s \frac{\rho_{\mathrm{LC}}}{s-p_{B}^{2}}
$$

- $\mathcal{T}_{+}^{(n)}\left(u, \mu^{2}\right)$: perturbatively calculable hard kernels
- $\phi^{(n)}\left(u, \mu^{2}\right)$: non-perturbative LCDAs, twist n
- $\langle\pi(p)| \bar{u}(0) \gamma_{\mu} \gamma_{5} d(x)|0\rangle=-i f_{\pi} p_{\mu} \int_{0}^{1} d u e^{i \bar{u} p \cdot x} \phi\left(u, \mu^{2}\right)+\ldots$,
- $\phi\left(u, \mu^{2}\right)=6 u(1-u) \sum_{n=0}^{\infty} a_{n}\left(\mu^{2}\right) C_{n}^{3 / 2}(2 u-1)$
${ }^{6}$ Factorisation theorem not proven to all orders, verified at given order by cancellation of IR and soft divergences

What is LCSR?

....which leads to the sum rule

Above the continuum threshold s_{0}, a continuum of states contribute and approximation of quark-hadron duality is thought to be reasonable, such that

$$
\rho_{\mathrm{had}}=\rho_{\mathrm{LC}} \Theta\left(s-s_{0}\right)
$$

Subtracting from both sides, and Borel transforming ($M^{2}=$ Borel parameter):

Sum rule for $f_{+}\left(q^{2}\right)$

$$
f_{+}\left(q^{2}\right)=\frac{1}{f_{B} m_{B}^{2}} \int_{m_{b}^{2}}^{s_{0}} d s \rho_{\mathrm{LC}} e^{-\left(s-m_{B}^{2}\right) / M^{2}},
$$

Parameters and uncertainties

Choosing s_{0} and M2
We carefully choose the sum rules parameters using the following:

- SR depends little on, but is clear extremum as $f n$ of s_{0}, M^{2};
- $S R$ for m_{B}, (differentiate SR by M^{-2}), fulfilled to 0.1%;
- the continuum contribution is under control, i.e. integral of the spectral density between s_{0} and ∞ should be $\sim 25-30 \%$ of the B contribution, between m_{b}^{2} and s_{0};
Dominant uncertainties arise due to varying the following:
- the continuum threshold s_{0} by $\pm 0.5 \mathrm{GeV}^{2}$ and the Borel parameter M_{2} by $\pm 1.2 \mathrm{GeV}^{2}$;
- the condensates $\langle\bar{q} q\rangle=(-0.24 \pm 0.01)^{3} \mathrm{GeV}^{3}, \frac{\langle\bar{q} \sigma g G q\rangle}{\langle\bar{q} q\rangle}=(0.8 \pm 0.2)$
- the twist- 3 parameter η_{3} by $\pm 50 \%$;
- the factorisation scale in the range $\mu / 2$ to 2μ.

Results (Preliminary)

Do the correlations affect observables? ${ }^{7}$

${ }^{7}$ Thanks to David Straub for preparing this at short notice

Summary and Outlook

Correlated errors for $B \rightarrow K^{*}$ form factors:

- Prevent community from resorting to soft form factors
- Include the factorizable $\mathcal{O}\left(1 / m_{B}\right)$ corrections

Thanks for listening! ${ }^{8}$

[^2]
Summary

 and Outlook
Correlated errors for $B \rightarrow K^{*}$ form factors:

- Prevent community from resorting to soft form factors
- Include the factorizable $\mathcal{O}\left(1 / m_{B}\right)$ corrections

Updated LCSR calculation:

- Latest input parameters, $B \rightarrow V$ form factors
- Full correlated errors and fit with Lattice using various parameterizations

Thanks for listening! ${ }^{8}$

[^3]
Summary

 and Outlook
Correlated errors for $B \rightarrow K^{*}$ form factors:

- Prevent community from resorting to soft form factors
- Include the factorizable $\mathcal{O}\left(1 / m_{B}\right)$ corrections

Updated LCSR calculation:

- Latest input parameters, $B \rightarrow V$ form factors
- Full correlated errors and fit with Lattice using various parameterizations

Things for the future:

- Full paper to appear in the coming months....

Thanks for listening! ${ }^{8}$

[^4]
Sum rules for m_{B}

$$
m_{B}^{2}=\int_{m_{b}^{2}}^{s_{0}} d s s \rho^{\mathrm{tot}}(s) / \int_{m_{b}^{2}}^{s_{0}} d s \rho^{\mathrm{tot}}(s)
$$

[^0]: ${ }^{1}$ see e.g. P. Ball and R. Zwicky, Phys. Rev. D 71 (2005) 014015
 [arXiv:hep-ph/0406232] and Phys. Rev. D 71 (2005) 014029 [arXiv:hep-ph/0412079]
 ${ }^{2}$ see e.g. A. Al-Haydari et al. [QCDSF Collaboration], Eur. Phys. J. A 43, 107 (2010) [arXiv:0903.1664 [hep-lat]]
 ${ }^{3}$ AB, T. Feldmann, M. Wick, JHEP 1009 (2010) 090 [arXiv:1004.3249 [hep-ph]]

[^1]: ${ }^{4}$ e.g. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, JHEP 1305 (2013) 137 [arXiv:1303.5794 [hep-ph]], S. Jaeger and J. Martin Camalich, JHEP 1305 (2013) 043 [arXiv:1212.2263 [hep-ph]].
 ${ }^{5}$ P. Ball and R. Zwicky, hep-ph/0406232, Phys. Rev. D 71, 014015 (2005), P. Ball and R. Zwicky, hep-ph/0412079, Phys. Rev. D 71, 014029 (2005)

[^2]: 8
 and to: the organisers for the great conference;David Straub for some great plots; and Flip Tanedo for letting m use his beamer theme

[^3]: 8
 and to: the organisers for the great conference;David Straub for some great plots; and Flip Tanedo for letting m use his beamer theme

[^4]: 8 and to: the organisers for the great conference; David Straub for some great plots; and Flip Tanedo for letting m use his beamer theme

