What can we learn from comparing different leptonic final states in $b \rightarrow sll$?

Alexander Shires, TU Dortmund

Flavour of New Physics in $b \rightarrow s$ transitions, Institute Henri Poincare Paris, 2nd June 2014

Introduction

- Measurements of different dilepton final states in $b \to sll$ can test the lepton and flavour couplings simultaneously.
- Part of spectrum of precision tests of $b \to sll$ decays to map out the coefficients.
- Consider the ratio of decay rates for $B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to K^+ e^+ e^-$.

$$R_{H} \equiv \frac{\int_{4m_{\mu}^{2}}^{q_{\rm max}^{2}} dq^{2} \, \frac{d\Gamma(B \to H \mu^{+} \mu^{-})}{dq^{2}}}{\int_{4m_{\mu}^{2}}^{q_{\rm max}^{2}} dq^{2} \, \frac{d\Gamma(B \to H e^{+} e^{-})}{dq^{2}}}, \quad H = X_{s}, K^{(*)}, \qquad \text{[Hiller, Kruger 2003]}$$

Enable more precise predictions than the O(30%) theoretical error in the BR!

Theoretical background

- Standard model: $R_H^{\rm SM} = 1 + O(m_\mu^2/m_b^2)$,
- Equality of coupling is concept of lepton-universality.
- Enhancement possible from either muon or electron modes.
- Contributions from scalars and pseudo-scalars could have sizeable effects.
- Anything which breaks lepton universality, for example R-parity violating models.

[Hiller, Kruger: 0310219]

[Bobeth, Hiller et al: 0709.4174]

[Bobeth, Hiller et al: 1111.2558]

SM prediction!

Observables for leptonic final states

• Basic observable is the ratio of branching fractions:

• Angular expansion:
$$\frac{d^2\Gamma_l}{dq^2\,d\cos\theta} = a_l(q^2) + b_l(q^2)\cos\theta + c_l(q^2)\cos^2\theta,$$

• With observables: $\frac{1}{\Gamma_l} \frac{d\Gamma_l}{d\cos\theta} = \frac{3}{4} (1 - F_H^l) (1 - \cos^2\theta) + \frac{1}{2} F_H^l + A_{\rm FB}^l \cos\theta,$

•
$$R_K = \frac{\Gamma_{\mu}}{\Gamma_e}$$
, $R_{A_{FB}} = \frac{A_{FB}^{\mu}}{A_{FB}^{e}}$, $R_{FL} = \frac{F_H^{\mu}}{F_H^{e}}$

Experimental status

Babar, arXiv: 1204.3933 Belle, arXiV: 0904.0770

• Babar: (0.1-8.12)

• $0.74^{+0.31}_{-0.40}(stat.)^{+0.06}_{-0.06}(syst.)$

• Belle: (0.1-22)

• $1.03^{+0.19}_{-0.19}(stat.)^{+0.06}_{-0.06}(syst.)$

- Measurements from Babar, Belle are compatible with unity with a 20% error!
- Present an measurement using the LHCb dataset from Run 1 of the LHC

Event selection

- Combination of events triggered using
 - High pT electron
 - High pT hadron
 - High pT track from the other b
- Separation of signal and combinatorial background achieved using kinematic and candidate quality cuts in addition to an multivariate classifier

- Efficiency to select events calculated using combination of data-corrected simulation and data driven methods
- Select q^2 region from 1 to 6
- Theoretically favoured
- Below radiative tail from $B^+ \rightarrow J/\Psi(ee)K^+$
- Avoids contamination from $c\bar{c}$ in the low recoil region

Event yields

PRELIMINARY, THIS IS A SNEAK PREVIEW FIRST OFFICIAL ANNOUNCEMENT at LHCP TOMORROW

$B^+ o K^+ e^+ e^-$ events with a high pT electron

Results

PRELIMINARY, THIS IS A SNEAK PREVIEW FIRST OFFICIAL ANNOUNCEMENT at LHCP TOMORROW

- Bin: $1 < q^2 < 6 \, GeV^2/c^4$
- Value of RK, combined across all these trigger categories:
- $R_K = 0.745^{+0.090}_{-0.074}(stat) \pm 0.036(syst)$
- 2.6σ from unity!
- Differential branching fraction
- $B(B^+ \to K^+ e^+ e^-) =$
- $1.56^{+0.19}_{-0.15}(stat)^{+0.06}_{-0.04}(syst) \times 10^{-7}$

Summary

- Measuring $b \to sll$ decays with different leptonic final states extends search for physics beyond the standard model to test *lepton* universality.
- R_K is the ratio of $B^+ \to K^+ \mu^+ \mu^-$ to $B^+ \to K^+ e^+ e^-$.
- LHCb measurement [PRELIMINARY] $R_{\rm K} = 0.745^{+0.090}_{-0.074} \, ({\rm stat}) \, ^{+0.036}_{-0.036} \, ({\rm syst}),$
- Most precise measurement of RK and differential branching fraction in the world.
- Exciting times ahead, many extensions possible: R_{K^*} , $R_{A_{FB}}$, R_{F_L}

Back up

Introduction

- The flavour changing neutral current $b \to sll$ is sensitive to effects from physics beyond the standard model
- The OPE provides a model-independent way to investigate the effects of any new couplings to the flavour sector.
- The equality of the electroweak couplings to electrons, muons and taus is called 'lepton universality'

Future prospects

- Electron final states are becoming more interesting!
- Where does this fit in with the current constraints?
- Measurements of $B_s \to ee$, $B_d \to K^*ee$?
- Taus?
- Possibility to measure more ratios with muon modes:
- Proposed observables F^l_H , A^l_{FB} for the decay $B \to Kll$
- High dilepton invariant mass?
- B factories?