Why is it interesting to study $B^0 \to K^{*0} e^+ e^-$?

M. Borsato¹, J. He², J. Lefrancois¹, C. Prouve³, M. H. Schune¹

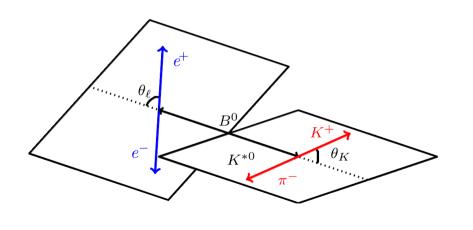
¹LAL-Orsay IN2P3 CNRS Universite de Paris-Sud ²CERN ³Bristol University

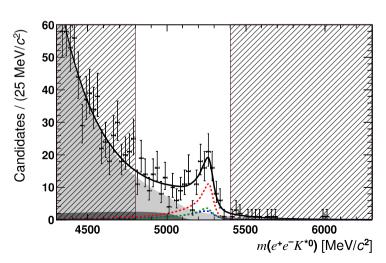
Workshop: "Flavor of New Physics in b → s transitions" Institut Henri Poincaré - Paris

2 - 3/06/2014

Why is it interesting? (compared to muons...)

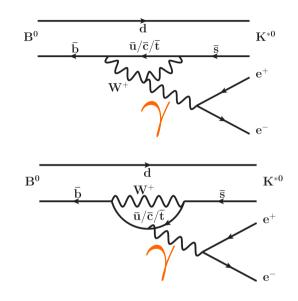
- Because the low q^2 endpoint is at 10^{-6} GeV²
 - Mainly photon pole contribution
 - Smallest form factor uncertainties
- You can make electrons at LHCb, but it's challenging
 - Cannot compete with muon sensitivity above 1 GeV²
 - Yet, below 1GeV² we got enough candidates to do a 3D angular analysis





VERY low q^2

- one q^2 bin chosen: $[0.0004, 1] \text{ GeV}^2$
- completely negligible lepton mass
- "clean" large recoil region
- small $F_{\rm L} \to \text{more sensitivity to A}_{\rm T}^{(2)}, {\rm A}_{\rm T}^{\rm Im}$
- photon pole contribution dominating
- sensible to C_7 Wilson coefficient
- and for $\frac{A_{\rm R}}{A_{\rm L}}$ small and real: ${\rm A_{\rm T}^{(2)}} \sim -2\frac{A_{\rm R}}{A_{\rm L}} \implies b \rightarrow s \gamma$ polarization!



- loss of sensitivity on $A_T^{(2)}$ as a function of q^2 with $\frac{1-4m_\ell^2/q^2}{1+2m_\ell^2/q^2}$
- but above $1 \, \text{GeV}^2$ the μ mode has same sensitivity and higher yield in LHCb

Lower q^2 limit

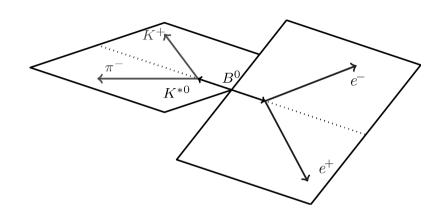
The lower q^2 limit is experimentally driven

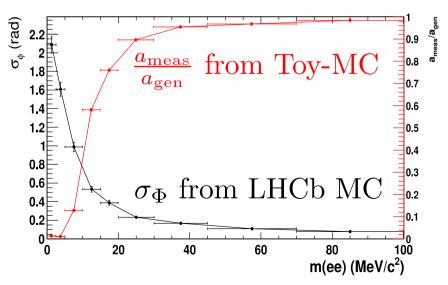
- angle between leptons gets very small
- \bullet ϕ is measured with bad resolution because of multiple scattering
- may bias the measurement of ϕ -related observables $A_T^{(2)}$ and A_T^{Im}

cut chosen at $20 \,\text{MeV}/c^2$ \rightarrow integrated bias below 1%

It serves also as a veto to $B^0 \to K^{*0} \gamma$ with the γ conversion to e^+e^- in the material

- background with $100 \times$ higher BR
- after veto just $\sim 4\%$ pollution





Digression on K*gamma

K*g used as a control channel

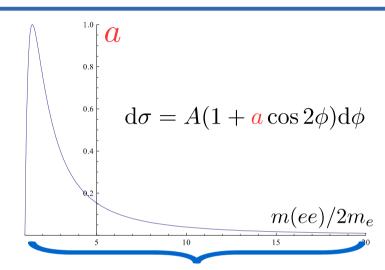
- Check mass shape
- Check fraction of partially hadronic bkg

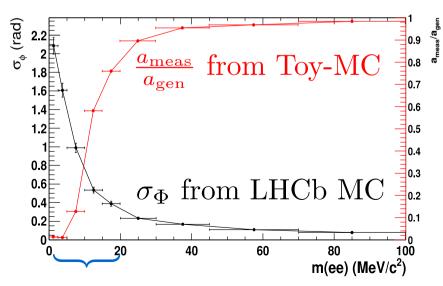
Question: can conversion electrons be used to measure photon polarization?

The conversion pair plane contains the polarization information
 Wick 1951 Phys Rev 81 p467-468
 using Weizsacker-Williams approximation:

$$d\sigma = \left(\frac{\beta r_0^2}{2x^2}\right) \{ (1 - \beta^2 \cos^2 \theta)^{-1} - \frac{1}{2} + 2\beta^2 (1 - \beta^2)$$
$$(1 - \beta^2 \cos^2 \theta)^{-2} \sin^2 \theta \cos^2 \phi \} \sin \theta d\theta d\phi$$

• But this information is lost for m(ee) masses above 10 MeV/ c^2 \Rightarrow not feasible in LHCb, one would need a tracker with a much smaller X/X_0





Angular observables

Folding: $\tilde{\phi} = \phi + \pi$ if $\phi < 0$ (and $\tilde{\phi} = \phi$ otherwise) \rightarrow removes $J_{4,5,7,8}$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}} = \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + \frac{1}{4$$

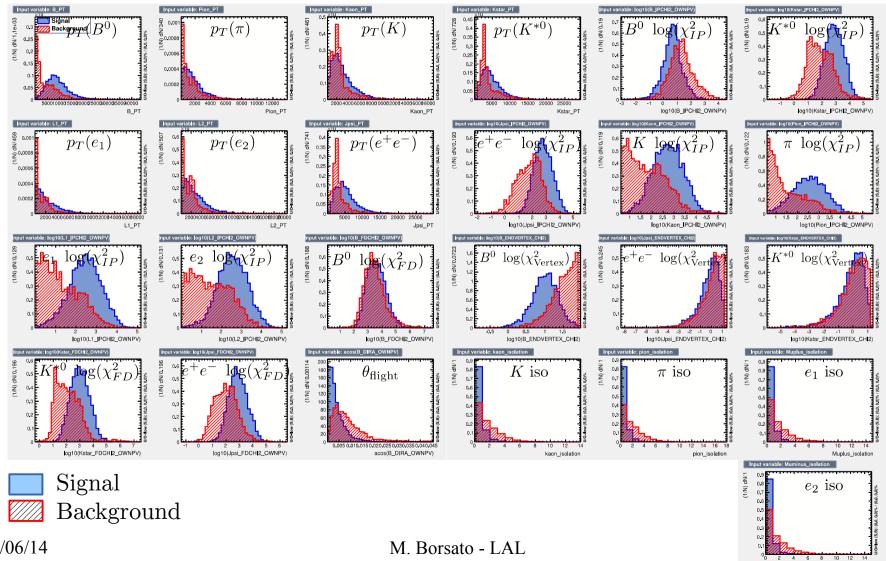
$$A_{T}^{(2)}, A_{T}^{Im}, A_{T}^{Re}$$

CP-averaged "clean" observables

$$\left(\frac{1}{4}(1 - F_{L})\sin^{2}\theta_{K} - F_{L}\cos^{2}\theta_{K}\right)\cos^{2}\theta_{\ell} + \frac{1}{4}(1 - F_{L})\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos 2\phi A_{T}^{(2)} + (1 - F_{L})\sin^{2}\theta_{K}\cos\theta_{\ell} A_{T}^{Re} + \frac{1}{2}(1 - F_{L})\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin 2\phi A_{T}^{Im}\right]$$

with other foldings measurements of observables such as P'_4, P'_5 is possible in principle

Boosted Decision Tree based selection



02/06/14

Backgrounds at LHCb

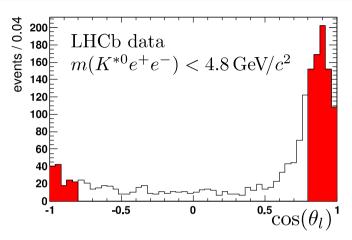
•
$$B_s^0 \to e^+ e^- \phi(K^+ (K^-))$$
: cut $m(KK)$

•
$$B^0 \to K^{*0}V(e^+e^-), V = \rho, \omega, \phi : \sim 1\%$$

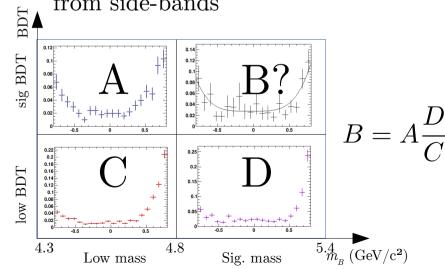
• $B^0 \to K^{*0} \gamma$, converted $\gamma : \sim 4\%$

•
$$B^0 \to D^- e^+ \nu$$
 $K^{*0} e^- \nu$

- The background peaks at high $\cos \theta_{\ell}$
- could cut on $m(K^{*0}e^{-})$ but bias $\cos \theta_{\ell}$
- Restrict $\cos \theta_{\ell}$ range not to bias A_{T}^{Re} \Rightarrow loose 10% of signal, but $A_{T}^{(2)}$ (A_{T}^{Im}) measurement is not affected as it enters with $\sin^{2} \theta_{\ell}$



• Angular distribution extracted from side-bands



LHCb sensitivity with 3 fb⁻¹

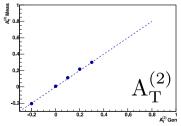
• $\sim 128 \text{ signal events} \text{ with } 3 \text{ fb}^{-1}$ $\rightarrow \frac{S}{B} \simeq 1, \quad \frac{S}{\sqrt{S+B}} \simeq 8$

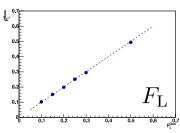
•
$$\sigma(\mathbf{A}_{\mathrm{T}}^{(2)}) \sim \frac{2}{1-F_{\mathrm{L}}} \sqrt{\frac{2}{N}}$$

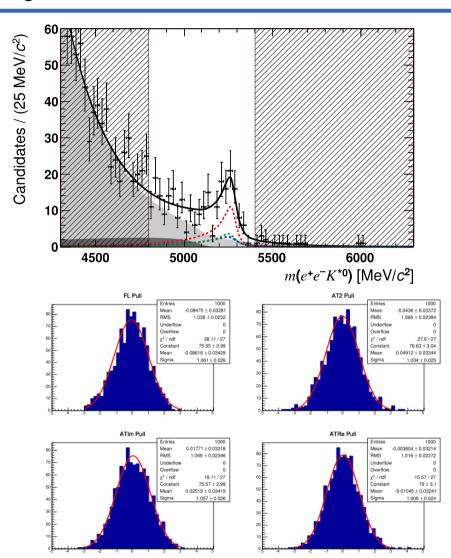
• from toy-MC of S + B:

	$ig _{F_{ m L}}$	${ m A}_{ m T}^{(2)}$	$ m A_{T}^{Im}$	$ m A_{T}^{Re}$
$\sigma_{ m stat}$	0.069	0.249	0.248	0.172

• fit has good stability:







Systematics

Systematic errors from:

- Background angular modelling (from data sidebands)
- Angular acceptance modelization (from LHCb MC)
- ϕ is very hard to bias, acceptance is flat and so are background distributions
- The systematic takes just into account the degree of knowledge of this flatness

$$\sigma_{\rm tot} = \sigma \sqrt{1 + \text{pull}^2}$$

Measurement statistically driven

Combinatorial modeling systematics

_		8 9		
	$F_{\rm L}$ pull	$A_{\rm T}^{(2)}$ pull	${ m A_T^{Im}}$ pull	${ m A_T^{Re}}$ pull
$\overline{+a_s,+a_c}$	-0.045	0.156	0.168	0
$-a_s, -a_c$	-0.029	-0.204	-0.192	0.012
$\overline{+a_1^K}$	-0.141	-0.070	0.045	0.037
$-a_1^K$	-0.007	-0.009	-0.041	0.045
$+a_3^{\ell} + a_4^{\ell}$	-0.185	-0.011	-0.061	0.182
$-a_3^\ell - a_4^\ell$	0.103	0.046	-0.052	-0.309

Part. hadronic modeling systematics

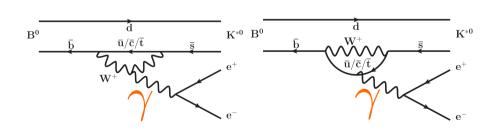
		$A_{\rm T}^{(2)}$ pull	${ m A_T^{Im}}$ pull	${ m A}_{ m T}^{ m Re}$ pull
$F_{\rm L}^{\rm part} = 0$ $F_{\rm L}^{\rm part} = 0.33$	-0.315	-0.025	0.006	0.020
$F_{\rm L}^{ m part} = 0.33$	0.151	-0.036	0.009	-0.002

	_	<u> </u>		<u>+</u>
+pull	+0.103	+0.156	+0.168	+0.182
-pull	-0.232	-0.201	+0.168 -0.192	-0.309

Impact of the measurement

- $b \rightarrow s\ell\ell$ analysis
- Bin $[0.0004, 1] \text{ GeV}^2$
- $< q^2 >= 0.2 \,\mathrm{GeV}^2$ one can use this to estimate correction due to terms others than C_7/C_7'
- May measure other observables like $P'_{4,5}$ but sensitivity and systematics were not explored yet

- $b \rightarrow s \gamma$ analysis
- A_R/A_L to the 10% level (if it is small and real) $\Rightarrow \sigma(\frac{A_R}{A_L}) \sim \frac{\sigma(A_T^{(2)})}{2} \sim 0.12$
- $\lim_{q^2 \to 0} A_{T}^{(2)} = \frac{2\mathcal{R}e(C_7^{\text{eff}}C_7'^{\text{eff}*})}{|C_7^{\text{eff}}|^2 + |C_7'^{\text{eff}}|^2}$ $\lim_{q^2 \to 0} A_{T}^{\text{Im}} = \frac{2\mathcal{I}m(C_7^{\text{eff}}C_7'^{\text{eff}*})}{|C_7^{\text{eff}}|^2 + |C_7'^{\text{eff}}|^2}$



Summary and conclusions

- Angular analysis of $B^0 \to e^+e^-K^{*0}$ at very low q^2 at LHCb is being finished and looks promising
- In $3 \, {\rm fb}^{-1}$ we got ~ 128 events with $S/B \sim 1$
- Measurement is statistically driven
- Expect a sensitivity on $A_T^{(2)}$ and A_T^{Im} of 0.25
- Real γ converting in e^+e^- not usable for polarization (in LHCb)
- Unblinding will hopefully happen soon
- Plan to have results ready at the end of summer