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PLAN of the TALK

• Theoretical and experimental overview of the 4-body decay B → K ∗(→ Kπ)l+l− mode

in terms of an optimal basis of CP conserving observables: P
(′)
i .

Implications of BR of B → K ∗µ+µ− and B → Kµ+µ− on the analysis.

• Possible explanations for the observed tensions with the SM.

• A consistency test on data on B → K ∗µ+µ− for future analysis.
A new relation between the zero of AFB and the anomaly in P ′5.

Future ? ...
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The angular distribution B̄d → K̄∗0(→ K−π+)l+l− with the K∗0 on the mass shell. It is described by s = q2 and
three angles θ`, θK and φ

d4Γ(B̄d )

dq2 d cos θ` d cos θK dφ
=

9

32π
J(q2, θ`, θK , φ) =

9

32π

∑
i

Ji (q
2)fi (θ`, θK , φ)

 −
φ

lθ θKB0

π

K

+

 −

µ+

µ
θ`: Angle of emission between K̄∗0

and µ− in di-lepton rest frame.
θK: Angle of emission between K̄∗0

and K− in di-meson rest frame.
φ: Angle between the two planes.

q2: dilepton invariant mass square.

Notice LHCb uses θLHCb
` = π − θus

`

Three regions in q2:

large recoil for K ∗: EK∗ � ΛQCD or 4m2
` ≤ q2 < 9 GeV2

resonance region (q2 = m2
J/Ψ, ...) betwen 9 < q2 < 14 GeV2.

low-recoil for K ∗: EK∗ ∼ ΛQCD or 14 < q2 ≤ (mB −mK∗)
2.
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How to extract all the information from B → K ∗(→ Kπ)µ+µ−?

1 Use Jk → Re(AL
i A

L
j ± AR

i A
R
j ) or Im(AL

i A
L
j ± AR

i A
R
j )

However Jk ∝ ξ2
⊥,‖ ⇒ Theory uncertainty very large.

2 Use Si → (Ji + J̄i )/(dΓ + d Γ̄) and Ai → (Ji − J̄i )/(dΓ + d Γ̄)

However: - Sensitivity at LO to soft form factors ξ⊥,‖ ⇓
- Scheme dependence when SFF are used ⇓ but not if pc are included ⇑
- Dependence on problematic form factor A0 albeit m` suppressed ⇓

- m` dependence on β` but also m` terms. ⇑ ⇓

3 Use P
(′)
k → ReÃi Ãj/

√
|Ãi |2|Ãj |2 (or Im) with Ãi → Ai + Āi

PCP
k → ReÂi Âj/

√
|Ãi |2|Ãj |2 (or Im) with Âi → Ai − Āi

However: - Sensitivity only at NLO to soft form factors ξ⊥,‖ ⇑
- Marginal scheme dependence when SFF are used ⇑ with or without pc.
- No dependence on problematic form factor A0 ⇑
- Some observables identical for m` = e, µ, τ ⇒ excellent cross check . ⇑
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Pi ,P
′
i defines an Optimal Basis of observables, a compromise between:

I. Excellent experimental accessibility and simplicity of the fit.

II. Reduced FF dependence (in the large-recoil region: 0.1 ≤ q2 ≤ 8 GeV2).

Our proposal for CP-conserving basis:{
dΓ

dq2
,AFB,P1,P2,P3,P

′
4,P
′
5,P
′
6

}
or P3 ↔ P′8 and AFB ↔ FL

where P1 = A2
T [Kruger, J.M’05],

P2 = 1
2A

re
T ,P3 = − 1

2A
im
T [Becirevic, Schneider’12]

P ′4,5,6 [Descotes, JM, Ramon, Virto’13]).

The corresponding CP-violating basis (Ji + J̄i → Ji − J̄i in numerators):{
ACP,A

CP
FB ,P

CP
1 , PCP

2 , PCP
3 , P′CP

4 , P′CP
5 , P′CP

6

}
or PCP

3 ↔ P′CP
8 and ACP

FB ↔ FCP
L
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Analysis of new LHCb data
on

B → K∗µ+µ−
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Experimental evidence: EPS+ Beauty

Present bins: [0.1,2], [2,4.3], [4.3,8.68], [1,6], [14.18,16], [16,19] GeV2.

Observable Experiment SM prediction Pull

〈P1〉[0.1,2] −0.19+0.40
−0.35 0.007+0.043

−0.044 −0.5

〈P1〉[2,4.3] −0.29+0.65
−0.46 −0.051+0.046

−0.046 −0.4

〈P1〉[4.3,8.68] 0.36+0.30
−0.31 −0.117+0.056

−0.052 +1.5

〈P1〉[1,6] 0.15+0.39
−0.41 −0.055+0.041

−0.043 +0.5

〈P2〉[0.1,2] 0.03+0.14
−0.15 0.172+0.020

−0.021 −1.0

〈P2〉[2,4.3] 0.50+0.00
−0.07 0.234+0.060

−0.086 +2.9

〈P2〉[4.3,8.68] −0.25+0.07
−0.08 −0.407+0.049

−0.037 +1.7

〈P2〉[1,6] 0.33+0.11
−0.12 0.084+0.060

−0.078 +1.8

〈AFB〉[0.1,2] −0.02+0.13
−0.13 −0.136+0.051

−0.048 +0.8

〈AFB〉[2,4.3] −0.20+0.08
−0.08 −0.081+0.055

−0.069 −1.1

〈AFB〉[4.3,8.68] 0.16+0.06
−0.05 0.220+0.138

−0.113 −0.5

〈AFB〉[1,6] −0.17+0.06
−0.06 −0.035+0.037

−0.034 −2.0

P1: No substantial deviation
(large error bars).

AFB-P2: A slight tendency for a
lower value of the second and
third bins of AFB is consistent
with a 2.9σ (1.7σ) deviation in
the second (third) bin of P2.

Zero: Preference for a slightly
higher q2-value for the zero of
AFB (same as the zero of P2).

Both effects can be
accommodated with CNP

7 < 0
and/or CNP

9 < 0.
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Experimental evidence: EPS+ Beauty

Observable Experiment SM prediction Pull

〈P ′4〉[0.1,2] 0.00+0.52
−0.52 −0.342+0.031

−0.026 +0.7

〈P ′4〉[2,4.3] 0.74+0.54
−0.60 0.569+0.073

−0.063 +0.3

〈P ′4〉[4.3,8.68] 1.18+0.26
−0.32 1.003+0.028

−0.032 +0.6

〈P ′4〉[1,6] 0.58+0.32
−0.36 0.555+0.067

−0.058 +0.1

〈P ′5〉[0.1,2] 0.45+0.21
−0.24 0.533+0.033

−0.041 −0.4

〈P ′5〉[2,4.3] 0.29+0.40
−0.39 −0.334+0.097

−0.113 +1.6

〈P ′5〉[4.3,8.68] −0.19+0.16
−0.16 −0.872+0.053

−0.041 +4.0

〈P ′5〉[1,6] 0.21+0.20
−0.21 −0.349+0.088

−0.100 +2.5

〈P ′4〉[14.18,16] −0.18+0.54
−0.70 1.161+0.190

−0.332 −2.1

〈P ′4〉[16,19] 0.70+0.44
−0.52 1.263+0.119

−0.248 −1.1

〈P ′5〉[14.18,16] −0.79+0.27
−0.22 −0.779+0.328

−0.363 +0.0

〈P ′5〉[16,19] −0.60+0.21
−0.18 −0.601+0.282

−0.367 +0.0

Definition of the anomaly:

P′5: There is a striking 4.0σ (1.6σ)
deviation in the third (second) bin
of P ′5.

Consistent with large negative
contributions in CNP

7 and/or CNP
9 .

P′4: in agreement with the SM, but
within large uncertainties, and it
has future potential to determine
the sign of CNP

10 .

P′6 and P′8: show small deviations
with respect to the SM, but such
effect would require complex phases
in CNP

9 and/or CNP
10 .

Us: (−0.19− (−0.872))/
√

0.162 + 0.0532 = 4.05 and Exp: (−0.19− (−0.872 + 0.053))/
√

0.162 + 0.0532 = 3.73
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Our SM predictions+LHCb data
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Figure : Experimental measurements and SM predictions for some B → K∗µ+µ− observables. The black crosses
are the experimental LHCb data. The blue band corresponds to the SM predictions for the differential quantities,
whereas the purple boxes indicate the corresponding binned observables.

Joaquim Matias Universitat Autònoma de Barcelona ParisAn Overview of B → K (∗)µ+µ−: What shall we expect?



Description of the analysis

Goal: Determine the Wilson coefficients C7,9,10, C′7,9,10: Ci = CSM
i + CNP

i

Standard χ2 frequentist approach: Asymmetric errors included, estimate theory uncertainties for each
set of CNP

i and all uncertainties are combined in quadrature.

We do three analysis: a) large-recoil data b) large+low-recoil data c) [1-6] bin

Observables:

B → K ∗µ+µ−: We take observables P1, P2, P ′4, P ′5, P ′6, P ′8 and AFB in the following binning:
-large-recoil: [0.1, 2], [2, 4.3], [4.3, 8.68] GeV2.
-low recoil: [14.18,16], [16,19] GeV2

-wide large-recoil bin: [1, 6] GeV2.

Radiative and dileptonic B decays: B(B → Xsγ)Eγ>1.6GeV, B(B → Xsµ
+µ−)[1,6] and

B(Bs → µ+µ−), AI (B → K ∗γ) and the B → K ∗γ time-dependent CP asymmetry SK∗γ
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General case all WC free

In conclusion our pattern of [PRD88 (2013) 074002] obtained from an Heff approach is

CNP
9 ∼ [−1.6,−0.9] > 3σ, CNP

7 ∼ [−0.05,−0.01] at 2σ, C′9 ∼ ±δ (SM) C10,C
′
7,10 ∼ ±ε (SM)

where δ is small and compatible with zero (SM) and ε is smaller.

⇒ There is strong evidence for a CNP
9 < 0, preference for CNP

7 < 0 and no clear-cut evidence for
CNP

10,7′,9′,10′ 6= 0.

A simplified version is CNP
9 = −1.2 or −1.5 with CSM

9 including all known em corrections.

Best fit points we find in different scenarios:

Large recoil: CNP
9 = −1.5, CNP

7eff = −0.02

Large recoil: CNP
9 = −1.6, CNP

7eff = −0.02, CNP
10 > 0, CNP

9′ < 0, CNP
7′ > 0,CNP

10′ < 0.

Large+Low: CNP
9 = −1.2, CNP

7eff = −0.03, CNP
10 > 0, CNP

9′ > 0, CNP
7′ < 0,CNP

10′ < 0
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Branching Ratio of B → K ∗µ+µ− and B → Kµ+µ−

→ BR are strongly dependent on FF choices (for lattice FF see S. Meinel’s talk)
→ We use them as cross check. → B → Kµµ provides info on CNP

9 + C ′9.
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(left) BR(B → K ∗µµ): blue curve is SM and red curve corresponds to CNP
9 = −1.5.

• 3 fb−1 data on B− → K−µ+µ− and B0 → K 0µ+µ− exhibit a similar deficit w.r.t. SM at large-recoil.

• A 2nd proposed solution by Altmannshofer-Straub −CNP
9 ∼ C ′9 ∼ 1 constructed to reproduce the SM

is in trouble. At large-recoil this 2nd solution is in tension with the new 3 fb−1 data of both modes.

• On the contrary this data is in very good agreement with our solution particularly at large but also
at low-recoil. We use updated WC, full expressions for the BR including important quadratic terms.

[Hofer, Descotes, Mescia, JM, Virto]
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Possible explanations of the observed discrepancies in B → K ∗µ+µ−:

1 Underestimated theory errors: Our plots include all known pieces in QCDF in SM.

There are three issues that can only be estimated:

i) Factorizable and non-factorizable power corrections (see J. Virto talk’s).
ii) Charm-loop contributions.
iii) Quark-hadron duality violations at low-recoil.

We have verified that the “usual suspects” i) and ii) does not provide a successful explanation
of the observed discrepancies at large-recoil. At low-recoil iii) will be important.

2 Experimental issue [statistical Fluctuation (we are still with 1 fb−1 dataset),...].

3 New Physics contribution mainly to the Wilson coefficient of the semileptonic operator O9.
This is already discussed and it is the main conclusion of our analysis.
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OPTION 1:

Theoretical uncertainties
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Large recoil region: Theoretical Framework . Option 1

There are basically two approaches:

⇒ Soft FF + NLO QCDF (O(αs)-factorizable+non-factorizable+weak annihilation) [BFS’01,’04]
[Descotes, Matias, Virto]

+ factorizable and non-factorizable power corrections [S. Descotes, L. Hofer, J. Matias, J. Virto]

F = F soft(ξ⊥, ξ‖) + ∆Fαs + aF + bF
q2

m2
B

+ cF
q4

m4
B

and Ai = A0
i + dF + eF

q2

m2
B

[Jaeger, Camalich]

⇒ Naive factorization (full form factors) + non-factorizable QCDF
(some weak annihilation neglected ) [Altmannshoffer, Ball, Barucha, Buras, Straub, Wick]

+ non-factorizable power corrections [S. Descotes, L. Hofer, J. Matias, J. Virto]

We have worked out the two options in three different schemes.

Conclusion: We find that the impact of power corrections is SUBSTANTIALLY smaller than
claimed in previous works and far from explaining any anomaly.

A third complementary approach for a future analysis of data for a second round of LHCb data

⇒ Amplitude analysis (see Petridis’s talk)

Use symmetries to fix 4 real/imaginary parts of amplitudes to zero.
Parametrize amplitudes by Ai = αi + βiq

2 + γi/q
2. How to provide this info to theorists?
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Result for P ′5 (preliminary)

The impact of factorizable power corrections is indeed smaller than previous estimates.

SFF no PC

SFF with PC

0 2 4 6 8
-1.0

-0.5

0.0

0.5

1.0

q2HGeV2L

P
5'

We use KMPW Form Factors.
Similar results using Ball-Zwicky.

Our method: SFF from full FF

I. Fit aF , bF , cF to reproduce exactly full FF

II. Take ∆aF = ∆bF = ∆cF = O(Λ/mB)× F (0)
corresponding to > 100% error w.r. to aF , bF , cF .

Main improvements:

Understand importance of choosing the right scheme to

maximize the dependence on known quantities ξ⊥,‖
minimizes the dependence on unknown ones (correlation
between errors of PC).

Use of all correlations among ai , bi , ci :

depend on scheme choice
exact relations of FF at q2 = 0.

In JC approach:

two different q2 dependence for soft FF used
at the same time
ξ⊥(q2) = ξ⊥(0)/(1− q2

m2
b
)2 and ξ⊥(q2) = T1(q2)

averaging different FF parametrization break correlations.
“unlucky” choice of scheme that maximizes error
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cc̄ loops

B̄

γ∗
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c
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Charm loop: Insertion of 4-quark operators (Oc
1,2) or penguin operators (O3−6) are important and

influence the extraction of C9. Perturbative contribution is absorbed in C eff
9 . Long distance:

Partly cancelled experimentally by removing charmonium resonances.
We followed LCSR computation and prescription from KMPW to recast the effect inside C9 as an
effective contribution (different for each amplitude). See plots above taken from KMPW.

Result:

An increase of charm mass, for instance, from 1.27 to 1.4 GeV shifts CNP
9 by +0.3 in the third bin,

reducing its negative value.
On the contrary we checked explicitly that this long distance charm contributions obtained by
KMPW will tend to slightly enhance the negativity of CNP

9 ⇒ It increases the anomaly in P ′5.
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Low recoil

• It corresponds to large
√
q2 ∼ O(mb) above Ψ′ mass, i.e., EK is around GeV or below.

• Methodology:

Operator Product Expansion in EK/
√
q2 or ΛQCD/

√
q2

Form factors in this region:
→ Extrapolation of LCSR FF above 14 GeV2 [Bobeth, van Dyk, Hiller]
→ Lattice form factors [Bouchard et al,. S. Meinel et al.]

• Main problem:
Existence of cc̄ resonances observed in this region for the related mode B− → K−µ+µ−

(clearly seen ψ(4160)), but many more expected to be seen from BESS-II data.
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LHCb

One would expect to observe also a peaking structure at the low-recoil of B → K ∗µ+µ−
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⇒ Quark-hadron duality-violations. How to estimate quark-hadron duality violations:

First estimate from [Grinstein-Pirjol] combining OPE/HQET gives violation around 5%

Analysis from [Beylich,Buchalla,Feldmann] estimated to 2%. BUT:

Simple toy model estimate based on Shifman’s model: OPE+ ∆2 (oscillating function, exponentially
suppressed: duality violating term). Right: simple model based on BES data summing pairs of close
resonances, excluding first narrow resonance at ψ(3770) (q2 = 14.2 GeV2).

Assumption: Neglect interactions between cc̄ and B → K system.
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Still open questions:

1. Integrate all bin (starting from 15 and not 14.18 GeV2 to avoid ψ(3770) problem) and then assign a
duality-violation: 2%?, 5%?, 10%?

2. Focus near the endpoint where resonances are exponentially suppressed?
3. Results of bin-by-bin at low-recoil are unclear if no model included.
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Interesting experiment by S. Meinel (remove 1st low-recoil bin and repeat the analysis) in a
lattice FF analysis of B → K ∗µµ and Bs → φµµ at high-q2 [hep-ph 1310.3887].

Result:

CNP
9 remained negative, while C ′9 became compatible with zero:

CNP
9 = −1.0± 0.6, C′9 = 1.2± 1.0 → CNP

9 = −0.9± 0.7, C′9 = 0.4± 0.7

in agreement with our pattern.

This might help in removing the second argument in favor of a C ′9 positive and large as claimed by AS:

large-recoil has a strong preference for C ′9 < 0.

low-recoil shows a preference for C ′9 > 0.

⇒ It is possible that the reason of the low-recoil preference for C ′9 > 0 might be a problem
(experimental or presence of a resonance or its tail) in the first low recoil bin.

Don’t forget the strange behavior of this first low-recoil bin of P ′4!!!

Suggestion to LHCb: Move the first low recoil bin to the right (like in B− → K−µ+µ−):
at 15 GeV2 or above
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OPTION 2:

Experimental issue
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Is there a way to perform a consistency test on data? Option 2

[Egede, Hurth, JM, Ramon, Reece’10]

The 4-body angular distribution (m` = 0, no scalars) exhibits 4 symmetries: transformations of the
transversity amplitudes (2 phases, 2 rotations) that leaves the distribution invariant

Symmetries ⇒ the minimal # observables for each scenario, AND how many Ji are independent:

nobs = 2nA − nS = nc − nd

Case nc Coefficients nA Amplitudes nS Symmetries nobs Observables nd relations

m` = 0, AS = 0 11 6 4 8 3 ⇐
m` = 0 11 7 5 9 2

m` > 0, AS = 0 11 7 4 10 1
m` > 0 12 8 4 12 0

J1s = 3J2s , J1c = −J2c and a third non-trivial consistency relation:

J2c = −2
(2J2s + J3)

(
4J2

4 + β2
` J

2
7

)
+ (2J2s − J3)

(
β2
` J

2
5 + 4J2

8

)
16J2

2s −
(
4J2

3 + β2
` J

2
6s + 4J2

9

)
+4

β2
` J6s(J4J5 + J7J8) + J9(β2

` J5J7 − 4J4J8)

16J2
2s −

(
4J2

3 + β2
` J

2
6s + 4J2

9

) ,

Identical equation can be written in terms of the J̄i .
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[J.M, N. Serra ’14]

This equation can be expressed in terms of Pi and PCP
i observables to get:

P̄2 = +
1

2k̄1

[
(P̄ ′4P̄

′
5 + δ1) +

1

β

√
(−1 + P̄1 + P̄ ′24 )(−1− P̄1 + β2P̄ ′25 ) + δ2 + δ3P̄1 + δ4P̄2

1

]
where

P̄i = Pi + PCP
i β =

√
1− 4m2

`/s

The sign in front of the square root is taken ”+”
everywhere by comparison with exact result in
SM, at low-recoil both solutions (+ and -)
converge. (Plot with δi → 0)

+

-
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0.0
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REMARK:

This is an exact equation valid for any q2 (low, large) and obtained from symmetries.
It involves 6 Pi of the basis plus one redundant.

An identical equation can be written in terms of P̂i = Pi − PCP
i , substituting P̄i → P̂i everywhere.

More importantly all terms inside the δi are strongly suppressed (by small strong and weak phases):

δi ∼ O((ImAi )
2, 1− k̄1) and k̄1 = 1 + FCP

L /FL
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Hypothesis: No New Physics in weak phases entering Wilson coefficients and not scalars/tensors.
Both hypothesis can be tested, measuring PCP

i and S1.

To an excellent approximation we have:

P2 =
1

2

[
P ′4P

′
5 +

1

β

√
(−1 + P1 + P ′24 )(−1− P1 + β2P ′25 )

]
This equation can be used in binned form if:

Observables are nearly constant inside the bin

Or the size of the bin is very small.

We correct for this by 〈P2〉 → 〈P2〉+ ∆NP
exact−relation

where ∆NP
exact−relation is order 10−2 except for [0.1-2]

bin and [1-6] bin.

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

q2HGeV2L

P 2

Figure : Green: SM exact, dashed inside
approximation, Red: NP CNP

9 = −1.5
exact, dashed inside approximation

The striking consequence of this equation is that it allows you to use data to predict
the impact of the anomaly in P ′5 in a completely different observable: P2
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Implication I: A new bound on P1

Imposing that the square root is well defined one finds:

P ′25 − 1 ≤ P1 ≤ 1− P ′24

Indeed this is an exact bound that could be alternatively obtained from

|P4| = |P ′4|/
√

1− P1 ≤ 1 and |P5| = |P ′5|/
√

1 + P1 ≤ 1

|P4,5| ≤ 1 comes from the geometrical interpretation of those observables in terms of ni .

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

1.5

q2 HGeV2L

XP
4¢

\

The new upper bound is very
stringent for the [4.3,8.68] bin,
cutting most of the space for a

positive P1: P
[4.3,8.68]
1 < 0.33

The lower bound is particularly
relevant for the [16,19] bin of

P1: P
[16,19]
1 > −0.68.
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Implication II: At the position of the zero q2
0 of P2 (same as AFB) the following relation holds:

[P2
4 + P2

5 ]|q2=q2
0

= 1 or [P ′24 + P ′25 ]|q2=q2
0

= 1− η(q2
0)

where
η(q2

0) = P2
1 + P1(P ′24 − P ′25 )|q2=q2

0

SM Zero of AFB : q2SM
0 =3.95± 0.38 (our), 3.90± 0.12 (Buras’08), 2.9± 0.3 (LO-Khodj.’10) GeV2

Experimental LHCb data: q2LHCb
0 = 4.9± 0.9 GeV2

If a future precise measurement of the
zero confirms q2exp

0 ∼ 4.9 GeV2 and
P ′4 ∼ 1 and P1 ≥ 0 at this point (as
present data suggests) THEN

P1(q2
0) ≤ 1− P ′24 ∼ 0

η(q2
0) ∼ 0 and P′5(q2

0) ∼ 0

(notice that in SM P ′5(q2
0) = −0.75)

A precise measurement of q2
0 (zero of AFB) outside the SM region would serve as

an indirect confirmation of the anomaly
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Implication III: We can establish a new relation between the anomaly bin in P ′5 and P2:

〈P2〉 =
1

2

[
〈P ′4〉〈P ′5〉+

√
(−1 + 〈P1〉+ 〈P ′4〉2)(−1− 〈P1〉+ 〈P ′5〉2)

]
+ ∆bin

exact

where ∆bin
exact = −0.04 for NP best fit point at 2nd and 3rd bin, while ∆bin

exact = −0.01 for 1 GeV2 size.

2 3 4 5 6 7 8 9

-0.5

0.0

0.5

q2HGeV2L

P
2

GRAY band: SM prediction.

BLUE cross: Measured value of P2

RED rectangle: CNP
9 = −1.5 NP solution.

Green cross is 〈P2〉 obtained from combining data of 〈P ′4,5〉,
〈P1〉, considering asymmetric errors and bound on P1

• Bin [2,4.3]: LHCb data:+0.50+0
−0.07 ,Relation:+0.46+0

−0.19

0.2σ from relation (green cross) to measured P2 (blue)

• Bin[4.3,8.68]: LHCb data:−0.25+0.07
−0.08, Relation:+0.10+0.13

−0.13

2.4σ from relation (green cross) to measured P2 (blue),
1.9σ from relation to NP best fit point (red box),
3.6σ from relation to SM.

Joaquim Matias Universitat Autònoma de Barcelona ParisAn Overview of B → K (∗)µ+µ−: What shall we expect?



Implication IV:

The first low-recoil bin [14.18,16] can also be tested using this equation

LHCb data on P2 in this bin gives: −0.50+0.03
−0.00

LHCb data on P ′4, P1, P ′5 implies that P2 should be: +0.50+0
−0.27 (if +) or −0.50+0.33

+0 (if -)

This shows a discrepancy of 3.7σ if + solution is taken

Or agreement if - solution is chosen

However both solutions + and - should give same result at low-recoil

Conclusion: The measurement of this first low recoil bin is probably exhibiting a statistical
fluctuation or signaling a problem at low recoil (a large strong phase driven by
resonances?)
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Implication V:

ALTERNATIVELY Full fit of the angular distribution with a small dataset

Under the assumption of real Wilson coefficients one has

Free parameters FL, P1, P ′4,5.

P2 is a function of the other observables and P ′6,8 are set to zero.

Entries  1000

 / ndf 2χ   16.6 / 17

Constant  4.5±   108 

Mean      0.007150± 0.006785 

Sigma     0.0060± 0.2179 

'5 inp' - P5 measP
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Mean      0.007150± 0.006785 

Sigma     0.0060± 0.2179 

' residual distribution5P

Figure : Residual distribution of P ′5 when fitting with
100 events. The fit of a gaussian distribution is
superimosed.

We find testing this fit for values around the
measured values: convergence and unbiased
pulls with as little as 50 events per bin. Gaussian
pulls are obtained with only 100 events.

This opens the possibility to perform a full
angular fit analysis with small bins in q2

The main hypothesis (real WC) can be tested
measuring PCP

i .

Implication VI: Some of the endpoint symmetries [Zwicky et al] obtained automatically:

P1 = −1→ P ′5 = 0 = P2
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Decision tree

A discrepancy between a measurement of P2 and the value obtained from data on P1, P ′4,5 should be
interpreted according to one of the following options:

At low-q2 (large-recoil region):

I presence of scalar or tensors. Improbable given constraints on CS from Bs → µ+µ− (limit on CS )
and strong double suppression m2

`/q
2 of this term in J5. Alternatively, one can construct dedicated

observables for scalars (S1 or tensor observables) to test directly this possibility. New Physics

II presence of new Physics contributions in weak phases. New Physics

III experimental effects (statistical fluctuation, uncontrolled systematic error, ...)

II and III can be distinguished by studying the pattern of breaking of the equation in all bins:
an experimental effect would be most likely localized in particular bins
new weak phases would produce a consistent pattern of breaking of the relation and can be observed in
ACP

i , PCP
i

At high-q2 (low-recoil region): previous possibilities

IV An extra possibility is opened: a new large strong phase brought by a resonance. This case would be
recognized by a local breaking of the relation on the bin where the resonance sits.

Disentangling II from IV same procedure as before.
Disentangling III from IV requires a dedicated experimental analysis of the angles and q2 in that region
allowing for the presence of resonances should be performed
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Conclusions

The analysis of LHCb data on the 4-body angular distribution of B → K ∗(→ Kπ)µ+µ− using

clean P
(′)
i , AFB + radiative observables gives the pattern:

CNP
9 ∼ [−1.6,−0.9], CNP

7 ∼ [−0.05,−0.01], C′9 ∼ ±δ C10,C
′
7,10 ∼ ±ε

where δ is small and ε is smaller. Consistent with new 3 fb−1 data on B → Kµµ.

Large-recoil: 0.1-8.6 GeV2: We have shown that the ‘usual suspects’ does not help in explaining
the pattern of deviations in front of a NP explanation:

Charm loops: The first results from this kind of contributions [Khodjamirian et al.’10] show that they
add a positive contribution to C9, enlarging the size of the discrepancy of data with SM prediction.

Factorizable Power Corrections: A careful implementation of correlations between PC + the freedom
to choose an appropriate scheme to define soft FF shows that PC are substantially smaller than
previously claimed.

⇒ Naive statement ”It is QCD” is in tension with our detailed analysis.

Low-recoil: 15-19.22 GeV2: The difficulty to establish the size of quark-hadron duality violations
in this region (2%?, 5%?, ...) complicates the analysis. Different possibilities: i) model resonances,
ii) integrate over the whole q2 region and assign an error,iii) take only the bin near the endpoint...

We have established a new connection between the zero of AFB and the anomaly in P ′5 and a
full set of consistency tests that experimentalists can use to check the consistency of future data on
B → K ∗µ+µ−.
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Future ?...

The best possible scenario to move from evidence to discovery:

P2:

bin [2,4.3] keep the 2.9 σ discrepancy
bin [4,3,8.68] should increase the
discrepancy w.r.t. the SM. ⇑

P ′5:

bin [2,4.3] should increase the significance
of the discrepancy with SM ⇓
bin [4.3,8.68] should decrease the
discrepancy possibly reducing a bit the
significance. ⇓

The best strategy would be to split bin [4.3,8.68]
into 2 or 3 bins and each one exhibiting a consistent
pattern.
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Back-up slides
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Relation between Ji and Pj ,P
′
k observables

The coefficients Ji of the distribution can be reexpressed now in terms of this basis of clean observables:

Correspondence Ji ↔ P
(′)
i :

BROWN: LO FF-dependent
observables (FL Longitudinal
Polarization Fraction of K∗)

RED: LO FF-independent
observables at large-recoil
(defined from these eqs.)

Here for simplicity (m` = 0).
See [J.M’12] for m` 6= 0.

(J2s + J̄2s) =
1

4
FT

dΓ + dΓ̄

dq2
(J2c + J̄2c) = −FL

dΓ + dΓ̄

dq2

J3 + J̄3 =
1

2
P1FT

dΓ + dΓ̄

dq2
J3 − J̄3 =

1

2
PCP

1 FT
dΓ + dΓ̄

dq2

J6s + J̄6s = 2P2FT
dΓ + dΓ̄

dq2
J6s − J̄6s = 2PCP

2 FT
dΓ + dΓ̄

dq2

J9 + J̄9 = −P3FT
dΓ + dΓ̄

dq2
J9 − J̄9 = −PCP

3 FT
dΓ + dΓ̄

dq2

J4 + J̄4 =
1

2
P′4

√
FTFL

dΓ + dΓ̄

dq2
J4 − J̄4 =

1

2
P′CP

4

√
FTFL

dΓ + dΓ̄

dq2

J5 + J̄5 = P′5
√

FTFL
dΓ + dΓ̄

dq2
J5 − J̄5 = P′CP

5

√
FTFL

dΓ + dΓ̄

dq2

J7 + J̄7 = −P′6
√

FTFL
dΓ + dΓ̄

dq2
J7 − J̄7 = −P′CP

6

√
FTFL

dΓ + dΓ̄

dq2
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C9
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< 0

SM prediction

LHCb data
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It is not surprising that the second bin in P2 fits
perfectly, while the third bin in P2 goes on the
right direction but does not fit perfectly.

Reason It is very difficult to get excellent
agreement with the third bin of P ′5 inside
a global fit.

— — — (magenta, green, red) C ′9 ≤ 0
— (brown) C ′9 > 0

• Our large recoil best fit point gives 〈P ′5〉[4.3,8.68] = −0.49 and reduces tension with data at 1.8σ
(from 4σ in SM): C ′9 < 0 is strongly favored by this bin.

• The best fit point with CNP
9 = −1.5 gives 〈P ′5〉[4.3,8.68] = −0.61.

• Any analysis with C ′9 > 0 provides a much worst disagreement with data in this bin.

Most plausible scenario: Third bin in P ′5 will go down (reducing distance with SM) while third bin in
P2 might go up (enlarging distance with SM): Global picture much more consistent.
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SM prediction

LHCb data
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• Our large recoil best fit point gives 〈P ′5〉[4.3,8.68] = −0.49 and reduces tension with data at 1.8σ
(from 4σ in SM): C ′9 < 0 is strongly favored by this bin.

• The best fit point with CNP
9 = −1.5 gives 〈P ′5〉[4.3,8.68] = −0.61.

• Any analysis with C ′9 > 0 provides a much worst disagreement with data in this bin.

Most plausible scenario: Third bin in P ′5 will go down (reducing distance with SM) while third bin in
P2 might go up (enlarging distance with SM): Global picture much more consistent.
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Is there a way to perform a consistency test on data? Option 2

[Egede, Hurth, JM, Ramon, Reece’10]

If we neglect scalars/tensors the 4-body angular distribution can be written in terms of 3 vectors:

n‖ =

(
AL
‖

AR∗
‖

)
, n⊥ =

(
AL
⊥

−AR∗
⊥

)
, n0 =

(
AL

0

AR∗
0

)
.

All the coefficients Ji can be expressed in terms of the products n†i nj (example):

J3 =
1

2

(
|n⊥|2 − |n‖|2

)
, J4 =

1√
2

Re(n†0 n‖) , J5 =
√

2 Re(n†0 n⊥) , J9 = −Im(n†⊥ n‖)

The angular distribution is invariant under a unitary transformation ni → Uni

n
′
i = Uni =

[
e iφL 0
0 e−iφR

] [
cos θ − sin θ
sin θ cos θ

] [
cosh i θ̃ − sinh i θ̃

− sinh i θ̃ cosh i θ̃

]
ni .

U defines the four symmetries of the massless angular distribution:

two global phase transformations (φL and φR),

a rotation θ among the real and imaginary components of the amplitudes independently

another rotation θ̃ that mixes real and imaginary components of the transversity amplitudes.
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S-wave pollution

[S. Descotes, T. Hurth, JM, J. Virto’13], [J.Matias’12]

Another possible source of uncertainty is the S-wave contribution coming from B → K ∗0 l
+l−.

[Becirevic, Tayduganov ’13], [Blake et al.’13]

We assume that both P and S waves are described by q2-dependent FF × a Breit-Wigner function.

The distinct angular dependence of the S-wave terms in folded distributions allow to disentangle

the signal of the P-wave from the S-wave: P
(′)
i can be disentangled from S-wave pollution [JM’12].

The modified distribution including the S-wave:

1

Γ′full

d4Γ

dq2 dcos θK dcos θl dφ
= PdfK∗(1− FS) +

1

Γ′full
WS

WS

Γ′full
=

3

16π

[
FS sin2 θ` + AS sin2 θ` cos θK + A4

S sin θK sin 2θ` cosφ

+A5
S sin θK sin θ` cosφ+ A7

S sin θK sin θ` sinφ+ A8
S sin θK sin 2θ` sinφ

]
Γ′full = Γ′K∗ + Γ′S and the longitudinal polarization fraction associated to Γ′S is

FS =
Γ′S

Γ′full
and 1− FS =

Γ′K∗

Γ′full
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We can get bounds on the size of the S-wave polluting terms from Cauchy-Schwartz

AS = 2
√

3
1

Γ′full

∫
Re
[
(A′0

LAL∗
0 + A′0

RAR∗
0 )BWK∗

0
(m2

Kπ)BW †K∗(m2
Kπ)
]
dm2

Kπ

|AS| ≤ 2
√

3
1

Γ′full

×
√

[|A′0L|2 + |A′0R |2][|AL
0|2 + |AR

0 |2] Z = 2
√

3
√

FS(1− FS)FL Z/
√

XY

X,Y,Z collect the Breit-Wigner. [S.Descotes,T, Hurth, JM,J. Virto 1303.5794]

Coefficient

Large
recoil
∞

Range

Low recoil
∞ Range

Large Recoil
Finite
Range

Low Recoil
Finite
Range

|AS | 0.33 0.25 0.67 0.49

|A4
S | 0.05 0.10 0.11 0.19

|A5
S | 0.11 0.11 0.22 0.23

|A7
S | 0.11 0.19 0.22 0.38

|A8
S | 0.05 0.06 0.11 0.11

Table : Illustrative values of the size of the bounds for the choices of FS ,FL,P1 and F = Z/
√

XY

Large-recoil: FS ∼ 7% (like B0 → J/ψK+π−), FL ∼ 0.7 and P1 ∼ 0

Low-recoil: FS ∼ 7%, FL ∼ 0.38 and P1 ∼ −0.48.

This may help in estimating the systematics associated to S-wave.
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A few properties of the relevant observables P1,2 and P ′4,5

P1 and P2 observables function of A⊥ and A‖ amplitudes

P1: Proportional to |A⊥|2 − |A‖|2
Test the LH structure of SM and/or
existence of RH currents that breaks
A⊥ ∼ −A‖

P2: Proportional to Re(AiAj )

Zero of P2 at the same position as the zero
of AFB

P2 is the clean version of AFB . Their
different normalizations offer different
sensitivities.
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P3 and P ′6,8 are proportional to ImAiAj and small if there are no large phases. All are < 0.1.

PCP
i are all negligibly small if there is no New Physics in weak phases.
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P ′4 and P ′5 observables function of A⊥,‖
and also A0 amplitudes

P′4,5: Proportional to Re(AiAj )

|P4,5| ≤ 1 but |P ′4,5| can be > 1.
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In the large-recoil limit

AL
⊥,‖ ∝

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝
[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

• In the SM CSM
9 ∼ −CSM

10 , this cancellation strongly suppresses AR
⊥,‖ above 4 Gev2: AL

⊥,‖ >> AR
⊥,‖.

This makes P4 → 1 and P5 → −1 for q2 → 8 GeV2 quite fast BUT the fact that |A‖| > |A⊥| and that

P ′4 ∝ AL∗
0 AL
‖ + AR

0 A
R∗
‖ and P ′5 ∝ AL∗

0 AL
⊥−AR

0 A
R∗
⊥ makes less efficient the convergence in the case of P ′5.

• In presence of New Physics affecting only C9 the cancellation C9 ∼ −C10 is less efective, consequently
AR
⊥,‖ is less suppressed and one should expect to see the effect of C9 6= CSM

9 in P ′5.
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