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Generalities

LHC is working very well, a lot of forthcoming data will be analysed to hopefully give an
answer to important questions (hierarchy problem, ...). Lattice QCD is a powerful tool to
bring theoretical ingredients that are necessary as soon as bound states of quarks and
gluons are involved in processes under study.



Leptonic decay (FCCC process)
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Leptonic decay (FCNC process)
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LHCb + CMS: B(Bs → µ+µ−) = 2.9± 0.7× 10−9

LHCb: B(Bd → µ+µ−) < 7.4× 10−10 @ 95% CL



Lattice simulations set up

Nowadays, simulations are quite close to the physical point.
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Flavour Lattice Averaging Group (FLAG) [http://itpwiki.unibe.ch/flag/]

The lattice community is doing an effort in providing to phenomenologists a collection of
useful results after a careful survey of the world-wide work.

Quantities under study:
– u, d and s quark masses – Strong coupling constant αs

– Vud and Vus – B(s) and D(s) meson decay constants
– Low Energy Constants – B mixing bag parameter BB

– Kaon mixing bag parameter BK – form factors of B(s) and D semileptonic decays

A lot of technicalities and issues about systematics, difficult to present outside our
community in a pedagogical way, are thus often hidden. FLAG is performing global
averages of results, after a selection according to several quality criteria:

– continuum limit extrapolation
⋆ 3 or more lattice spacings, a2max/a

2
min ≥ 2, D(amin) ≤ 2%, δ(amin) ≤ 1

© 2 or more lattice spacings, a2max/a
2
min ≥ 1.4, D(amin) ≤ 10%, δ(amin) ≤ 2

� otherwise

D(a) = Q(a)−Q(0)
Q(a)

δ(a) = Q(a)−Q(0)

σcont
Q

– renormalization and matching:
⋆ absolutely renormalized or non-pertubative
© 1-loop perturbation theory or higher with an estimate of truncation error
� otherwise



Flavour Lattice Averaging Group (FLAG) [http://itpwiki.unibe.ch/flag/]

The lattice community is doing an effort in providing to phenomenologists a collection of
useful results after a careful survey of the world-wide work.

Quantities under study:
– u, d and s quark masses – Strong coupling constant αs

– Vud and Vus – B(s) and D(s) meson decay constants
– Low Energy Constants – B mixing bag parameter BB

– Kaon mixing bag parameter BK – form factors of B(s) and D semileptonic decays

A lot of technicalities and issues about systematics, difficult to present outside our
community in a pedagogical way, are thus often hidden. FLAG is performing global
averages of results, after a selection according to several quality criteria:

– finite-volume
⋆ mπL & 3.7 or 2 volumes at fixed parameters of the simulation
© mπL & 3

� otherwise

– chiral extrapolation
⋆ mπ min . 200 MeV
© 200 MeV . mπ min . 400 MeV
� otherwise

Results with tiny errors must be taken with care, unfortunately they sometimes
dominate too much the averages.



Heavy quark on the lattice

Issue for B-physics on the lattice: systematics coming from large discretisation effects
(ΛCompt ∼ 1/mQ).

Cut-off Effects cut-off effects cut-off effects

Several strategies are proposed in the literature to deal with those cut-off effects:

• Use NRQCD to describe the heavy quark [P. Lepage and B. Thacker, ’91]; though, no
continuum limit when the theory is regularised on the lattice

• Define an action with counterterms that are tuned to get O(a), O(amQ) and
O(αs(amQ)

n) improvements [A El Khadra et al, ’96; N. Christ et al, ’06]

• Computation within Heavy Quark Effective Theory, the effective couplings are
determined non perturbatively by imposing matching conditions between QCD and
HQET [J. Heitger and R. Sommer, ’03]

• Computation within QCD: use of the HQET scaling laws to interpolate easily a
quantity between the charm region and the (exactly known) infinite heavy mass limit
[B. B. et al, ’09]



Extraction of fB(s)
with Nf = 2 + 1 RHQ [RBC/UKQCD: N. Christ et al, ’14]

Purpose: define a lattice action for heavy quarks such that the improvement of the hadron
spectrum is realised at O(a), O(a~p) and at all orders of (am0), am0 ∼ 1.

Kinematics: |~p| ∼ ΛQCD (hl mesons), |~p| ∼ αsmQ (hh mesons).

Necessity to break the axis symmetry because p0 ≫ ΛQCD.

Only 3 parameters are required in the effective action; the improvement of matrix elements
needs the introduction of further counter-terms to the operators and interpolating fields:
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It has been shown that one can fix rt = 0, rs = 0 and cE = cB ≡ cP .
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Several applications of step scaling and
matching are performed.

The matching at the smallest lattice spacing
is done with Domain Wall Fermions

=⇒ discretisation effects are O(am)2

Parameters of the RHQ action are finally interpolated to mb.

One performs a combined extrapolation to the chiral and continuum limit of fB and fBs/fB .

fB+ = 195.4(15.8) MeV, fB0 = 196.2(15.7) MeV, fBs = 235.4(12.2) MeV
fBs/fB+ = 1.220(82), fBs/fB0 = 1.193(59)



Extraction of fB(s)
in Nf = 2 HQET [ALPHA: B. B. et al, ’14]

LHQET,1/m = ψ̄hD0ψh +mbareψ̄hψh − ωkinψ̄hD
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The effective couplings are determined non perturbatively by imposing matching conditions
between QCD and HQET. Hadronic matrix elements are extracted with a particular care to
excited states.
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Chiral and continuum limit extrapolations of mB are performed to get mRGI
b . Several heavy

quark masses mh are considered on the QCD side of the whole program =⇒ effective
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Having interpolated the HQET coupling at mb, it is then straightforward to perform a

combined chiral and continuum extrapolation of fBd,s
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fB = 186(13)(2)χ MeV, fBs/fB = 1.203(62)(19)χ, fBs = 224(14)(2)χ MeV
f stat
B = 190(5)(2)χ MeV, (fBs/fB)

stat = 1.189(24)(30)χ, f stat
Bs

= 226(6)(9)χ MeV



Extraction of fB(s)
in Nf = 2 TmQCD [ETMC: N. Carrasco et al, ’13]

A techniques to interpolate in the mb region results obtained around mc, using scaling laws
in the heavy quark limit, has been developed with great success.
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One has to determine K, λ and interpolate lattice data qL to a sequence of “reference

masses” m̂i
h = λim̂

(1)
h by a smooth function, then perform a combined fit of qL(m̂(i)

h ) to
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h ).
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The first task is to get the b quark mass, through mhl.
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The second step is the extraction of the decay constants fB and fBs .
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fB = 189(8) MeV, fBs = 228(8) MeV, fBs/fB = 1.206(24)



Collection of lattice results and averages

[N. Christ et al, ’14]
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δfB ∼ 5%, δfBs ∼ 3.5%, δ|fBs/fB − 1| ∼ 10%


	
	Generalities
	
	
	
	
	Heavy quark on the lattice
	
	
	
	
	
	
	Collection of lattice results and averages

