Lattice determination of the B/B_s decay constant

Benoît Blossier

Flavour of new physics in $b \rightarrow s$ transitions, Paris, 2 – 3 June 2014

- Generalities
- Heavy quark on the lattice
- Collection of lattice results and averages

Generalities

LHC is working very well, a lot of forthcoming data will be analysed to hopefully give an answer to important questions (hierarchy problem, ...). Lattice QCD is a powerful tool to bring theoretical ingredients that are necessary as soon as bound states of quarks and gluons are involved in processes under study.

Leptonic decay (FCCC process)

Lattice simulations set up

Nowadays, simulations are quite close to the physical point.

Flavour Lattice Averaging Group (FLAG) [http://itpwiki.unibe.ch/flag/]

The lattice community is doing an effort in providing to phenomenologists a collection of useful results after a careful survey of the world-wide work.

Quantities under study:

- -u, d and s quark masses
- $-V_{ud}$ and V_{us}
- Low Energy Constants
- Strong coupling constant α_s
- $-B_{(s)}$ and $D_{(s)}$ meson decay constants
- -B mixing bag parameter B_B
- Kaon mixing bag parameter B_K form factors of $B_{(s)}$ and D semileptonic decays

A lot of technicalities and issues about systematics, difficult to present outside our community in a pedagogical way, are thus often hidden. FLAG is performing global averages of results, after a selection according to several quality criteria:

- continuum limit extrapolation
 - ★ 3 or more lattice spacings, $a_{\max}^2/a_{\min}^2 \geq 2$, $D(a_{\min}) \leq 2\%$, $\delta(a_{\min}) \leq 1$
 - 2 or more lattice spacings, $a_{\max}^2/a_{\min}^2 \ge 1.4$, $D(a_{\min}) \le 10\%$, $\delta(a_{\min}) \le 2$ otherwise

$$D(a) = \frac{Q(a) - Q(0)}{Q(a)} \quad \delta(a) = \frac{Q(a) - Q(0)}{\sigma_Q^{\text{cont}}}$$

- renormalization and matching:
 - ★ absolutely renormalized or non-pertubative
 - 1-loop perturbation theory or higher with an estimate of truncation error otherwise

Flavour Lattice Averaging Group (FLAG) [http://itpwiki.unibe.ch/flag/]

The lattice community is doing an effort in providing to phenomenologists a collection of useful results after a careful survey of the world-wide work.

Quantities under study:

- -u, d and s quark masses
- $-V_{ud}$ and V_{us}
- Low Energy Constants
- Strong coupling constant α_s
- $-B_{(s)}$ and $D_{(s)}$ meson decay constants
- -B mixing bag parameter B_B
- Kaon mixing bag parameter B_K form factors of $B_{(s)}$ and D semileptonic decays

A lot of technicalities and issues about systematics, difficult to present outside our community in a pedagogical way, are thus often hidden. FLAG is performing global averages of results, after a selection according to several quality criteria:

- finite-volume

 $\star m_{\pi}L \gtrsim 3.7$ or 2 volumes at fixed parameters of the simulation

- $\bigcirc m_{\pi}L \gtrsim 3$
- otherwise
- chiral extrapolation
 - $\star m_{\pi \min} \lesssim 200 \text{ MeV}$
 - \bigcirc 200 MeV $\lesssim m_{\pi \min} \lesssim 400$ MeV
 - otherwise

Results with tiny errors must be taken with care, unfortunately they sometimes dominate too much the averages.

Heavy quark on the lattice

Issue for *B*-physics on the lattice: systematics coming from large discretisation effects ($\Lambda_{\rm Compt} \sim 1/m_Q$).

Several strategies are proposed in the literature to deal with those cut-off effects:

- Use NRQCD to describe the heavy quark [P. Lepage and B. Thacker, '91]; though, no continuum limit when the theory is regularised on the lattice
- Define an action with counterterms that are tuned to get $\mathcal{O}(a)$, $\mathcal{O}(am_Q)$ and $\mathcal{O}(\alpha_s(am_Q)^n)$ improvements [A El Khadra *et al*, '96; N. Christ *et al*, '06]
- Computation within Heavy Quark Effective Theory, the effective couplings are determined non perturbatively by imposing matching conditions between QCD and HQET [J. Heitger and R. Sommer, '03]
- Computation within QCD: use of the HQET scaling laws to interpolate easily a quantity between the charm region and the (exactly known) infinite heavy mass limit [B. B. et al, '09]

Extraction of $f_{B_{(s)}}$ with $N_{\rm f} = 2 + 1$ RHQ [RBC/UKQCD: N. Christ *et al*, '14]

Purpose: define a lattice action for heavy quarks such that the improvement of the hadron spectrum is realised at $\mathcal{O}(a)$, $\mathcal{O}(a\vec{p})$ and at all orders of (am_0) , $am_0 \sim 1$.

Kinematics: $|\vec{p}| \sim \Lambda_{QCD}$ (hl mesons), $|\vec{p}| \sim \alpha_s m_Q$ (hh mesons).

Necessity to break the axis symmetry because $p_0 \gg \Lambda_{QCD}$.

Only 3 parameters are required in the effective action; the improvement of matrix elements needs the introduction of further counter-terms to the operators and interpolating fields:

$$S_{\text{lat}} = \sum_{n',n} \overline{\psi}_{n'} \left(\gamma^0 D^0 + \zeta \vec{\gamma} \cdot \vec{D} + m_0 - \frac{r_t}{2} (D^0)^2 - \frac{r_s}{2} \vec{D}^2 + \sum_{i,j} \frac{i}{4} c_B \sigma_{ij} F_{ij} + \sum_i \frac{i}{2} c_E \sigma_{0i} F_{0i} \right)_{n',n} \psi_n$$

$$\Psi = z_q^{-1/2} (1 + \delta a \vec{\gamma} \cdot \vec{\partial}) \psi$$

$$(1)$$

It has been shown that one can fix $r_t = 0$, $r_s = 0$ and $c_E = c_B \equiv c_P$.

Several applications of step scaling and matching are performed.

The matching at the smallest lattice spacing is done with Domain Wall Fermions

 \implies discretisation effects are $\mathcal{O}(am)^2$

Parameters of the RHQ action are finally interpolated to m_b .

One performs a combined extrapolation to the chiral and continuum limit of f_B and f_{B_s}/f_B .

 $f_{B^+} = 195.4(15.8) \text{ MeV}, f_{B^0} = 196.2(15.7) \text{ MeV}, f_{B_s} = 235.4(12.2) \text{ MeV}$ $f_{B_s}/f_{B^+} = 1.220(82), f_{B_s}/f_{B^0} = 1.193(59)$ **Extraction of** $f_{B_{(s)}}$ in $N_{\rm f} = 2$ HQET [ALPHA: B. B. *et al*, '14]

$$\mathcal{L}^{\mathrm{HQET},1/\mathrm{m}} = \bar{\psi}_h D_0 \psi_h + m_{\mathrm{bare}} \bar{\psi}_h \psi_h - \omega_{\mathrm{kin}} \bar{\psi}_h \mathbf{D}^2 \psi_h - \omega_{\mathrm{spin}} \bar{\psi}_h \sigma \cdot \mathbf{B} \psi_h$$

$$A_0^{\mathrm{HQET},1/\mathrm{m}} = Z_A^{\mathrm{HQET}}[\bar{\psi}_l \gamma_0 \gamma^5 \psi_h + c_A^{(1)} \bar{\psi}_l \frac{1}{2} \gamma^5 \gamma_i (\nabla_i - \overleftarrow{\nabla}_i) \psi_h + c_A^{(2)} \partial_i [\bar{\psi}_l \gamma_i \gamma^5 \psi_h]$$

The effective couplings are determined non perturbatively by imposing matching conditions between QCD and HQET. Hadronic matrix elements are extracted with a particular care to excited states.

$$m_B = m_{\text{bare}} + E^{\text{stat}} + \omega_{\text{kin}} E^{\text{kin}} + \omega_{\text{spin}} E^{\text{spin}}$$

$$f_B \sqrt{m_B/2} = Z_A^{\text{HQET}} (1 + b_A^{\text{stat}} m_q) p^{\text{stat}} \left(1 + \omega_{\text{kin}} p^{\text{kin}} + \omega_{\text{spin}} p^{\text{spin}} + c_A^{(1)} p^{A^{(1)}} \right)$$

Chiral and continuum limit extrapolations of m_B are performed to get m_b^{RGI} . Several heavy quark masses m_h are considered on the QCD side of the whole program \implies effective couplings $\omega(m_h)$ and meson masses $m_B(m_h)$.

Having interpolated the HQET coupling at m_b , it is then straightforward to perform a combined chiral and continuum extrapolation of $f_{B_{d,s}}\sqrt{m_{B_{d,s}}/2}$.

$$\begin{split} f_B &= 186(13)(2)_{\chi} \text{ MeV}, \ f_{B_s}/f_B = 1.203(62)(19)_{\chi}, \ f_{B_s} = 224(14)(2)_{\chi} \text{ MeV} \\ f_B^{\text{stat}} &= 190(5)(2)_{\chi} \text{ MeV}, \ (f_{B_s}/f_B)^{\text{stat}} = 1.189(24)(30)_{\chi}, \ f_{B_s}^{\text{stat}} = 226(6)(9)_{\chi} \text{ MeV} \end{split}$$

Extraction of $f_{B_{(s)}}$ in $N_f = 2$ TmQCD [ETMC: N. Carrasco *et al*, '13]

A techniques to interpolate in the m_b region results obtained around m_c , using scaling laws in the heavy quark limit, has been developed with great success.

$$q(x,\lambda,\hat{m}_l) = \lambda^{\alpha} \frac{A_{hl}(1/x,\hat{m}_l)}{A_{hl}(1/\lambda x,\hat{m}_l)} \frac{\mathcal{Z}(\ln x\lambda)}{\mathcal{Z}(\ln x)} \left[\frac{\rho(\ln x)}{\rho(\ln \lambda x)}\right]^{\alpha}$$

 $\lambda = \frac{x^{(n-1)}}{x^n} > 1$ is the heavy mass step, $x = 1/\hat{m}_h$, $\hat{m}_{l(h)}$ are renormalised light (heavy) quark masses, $\rho(\ln \hat{m}_h)\hat{m}_h = m_h^{\text{pole}}$, $A^{\text{QCD}} = \mathcal{Z}A^{\text{HQET}}$

$$\lim_{x \to 0} \left[\rho(\ln x)/x \right]^{\alpha} A_{hl}(1/x)/\mathcal{Z}(\ln x) = \mathcal{C}_{\text{ste}} \quad q(\Phi) = \lim_{a \to 0} q^{L}(\Phi, a) \quad \hat{m}_{b} \sim \lambda^{K} \hat{m}_{c}$$

$$q_p^{(2)}q_p^{(3)}\cdots q_p^{(K+1)} = \lambda^{K\alpha} \frac{A_{hl}(\hat{m}_h^{(1)})}{A_{hl}(\hat{m}_h^{(K+1)})} \left\{ \frac{\mathcal{Z}(\ln \hat{m}_h^{(1)})}{\mathcal{Z}(\ln \hat{m}_h^{(K+1)})} \left[\frac{\rho(\ln \hat{m}_h^{(K+1)})}{\rho(\ln \hat{m}_h^{(1)})} \right]^{\alpha} \right\}_p$$

One has to determine K, λ and interpolate lattice data q^L to a sequence of "reference masses" $\hat{m}_h^i = \lambda^i \hat{m}_h^{(1)}$ by a smooth function, then perform a combined fit of $q^L(\hat{m}_h^{(i)})$ to extrapolate to the continuum limit; $A_{hl}(\hat{m}_b) = A_{hl}(\hat{m}_h^{(1)}) \times \prod_i q(\hat{m}_h^{(i)})$.

$$y = \lambda^{-1} \frac{M_{hl}(1/\lambda x, \hat{m}_l)}{M_{hl}(1/x, \hat{m}_l)} \left[\frac{\rho(\ln x)}{\rho(\ln \lambda x)} \right]^{-1} \quad z = \lambda^{1/2} \frac{f_{hl}(1/x, \hat{m}_l)}{f_{hl}(1/\lambda x, \hat{m}_l)} \frac{Z_{\text{stat}}(\ln x\lambda)}{Z_{\text{stat}}(\ln x)} \left[\frac{\rho(\ln x)}{\rho(\ln \lambda x)} \right]^{1/2}$$

The first task is to get the *b* quark mass, through m_{hl} .

The second step is the extraction of the decay constants f_B and f_{B_s} .

 $f_B = 189(8)$ MeV, $f_{B_s} = 228(8)$ MeV, $f_{B_s}/f_B = 1.206(24)$

Collection of lattice results and averages

[N. Christ *et al*, '14]

 $\delta f_B \sim 5\%, \quad \delta f_{B_s} \sim 3.5\%, \quad \delta |f_{B_s}/f_B - 1| \sim 10\%$