$B_{s} \rightarrow \mu \mu$ within (mostly) the $S M$

Diego Guadagnoli
LAPTh Annecy

Outline

\square Why $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$
$\square \quad \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ in the SM: structure and theory errors

V $\quad \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ beyond the SM : possible directions

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]$: a hard probe of scalar-fermion interactions

\square Model-independent approach: effective operators

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{aligned}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right)
\end{aligned} O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right), ~\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) \quad O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu), ~\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) \quad O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
$$

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]:$a hard probe of scalar-fermion interactions

Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} & \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} & \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} & \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]:$a hard probe of scalar-fermion interactions

Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{array}{ll}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} S\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} S\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

Why are new contributions to scalar operators actually plausible?

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]:$a hard probe of scalar-fermion interactions

Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} & \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} & \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

Why are new contributions to scalar operators actually plausible?

- Observation:
the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero ($g \rightarrow 0$).

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]:$a hard probe of scalar-fermion interactions

Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

Why are new contributions to scalar operators actually plausible?

- Observation:
the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero ($g \rightarrow 0$).

$$
\begin{aligned}
& A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \\
& \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
\end{aligned}
$$

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]:$a hard probe of scalar-fermion interactions

Model-independent approach: effective operators
Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator

$$
\begin{aligned}
O_{A} \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{aligned}
$$

Why are new contributions to scalar operators actually plausible?

- Observation:
the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero ($g \rightarrow 0$).

$$
\begin{aligned}
& A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \\
& \text { with } Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
\end{aligned}
$$

- Hence the relevant proportionality is:

$$
A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} \cdot g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}}
$$

$B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]:$a hard probe of scalar-fermion interactions

Model-independent approach: effective operators

SM operator

Beyond the SM,
a total of 6 operators can contribute:
(One may write also two tensor operators, but their matrix elements vanish for this process.)

$$
\begin{array}{rlrl}
O_{A} & \equiv\left(\bar{b} \gamma_{L}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) & O_{A}^{\prime} \equiv\left(\bar{b} \gamma_{R}^{\alpha} s\right)\left(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu\right) \\
O_{S} & \equiv\left(\bar{b} P_{L} s\right)(\bar{\mu} \mu) & O_{S}^{\prime} \equiv\left(\bar{b} P_{R} s\right)(\bar{\mu} \mu) \\
O_{P} \equiv\left(\bar{b} P_{L} s\right)\left(\bar{\mu} \gamma_{5} \mu\right) & O_{P}^{\prime} \equiv\left(\bar{b} P_{R} s\right)\left(\bar{\mu} \gamma_{5} \mu\right)
\end{array}
$$

Why are new contributions to scalar operators actually plausible?

- Observation:
the $B_{s} \rightarrow \mu \mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero ($g \rightarrow 0$).

$$
\begin{aligned}
& A_{B_{s} \rightarrow \mu \mu} \propto G_{F} \cdot \alpha_{e . m .} \cdot Y\left(M_{t}^{2} / M_{W}^{2}\right) \\
& \text { with } \quad Y\left(\frac{M_{t}^{2}}{M_{W}^{2}}\right) \sim \frac{M_{t}^{2}}{M_{W}^{2}} \quad \text { because of GIM }
\end{aligned}
$$

- Hence the relevant proportionality is:

$$
\begin{aligned}
& A_{B_{s} \rightarrow \mu \mu} \propto \frac{1}{v^{2}} \cdot g^{2} \cdot \frac{M_{t}^{2}}{M_{W}^{2}} \propto \frac{y_{t}^{2}}{v^{2}} \\
& \begin{array}{c}
\text { the } \mathbf{g}^{2} \text { dependence } \\
\text { cancels out }
\end{array}
\end{aligned}
$$

So this process is a genuine probe of Yukawa interactions i.e. of the scalar-fermion sector

$$
\begin{gathered}
\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu \\
\text { within the } \mathrm{SM}
\end{gathered}
$$

The $B_{s} \rightarrow \mu \mu$ decay within the $S M$: structure

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2} / M_{W}^{2}\right)
$$

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times \underbrace{\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2}}_{\text {couplings: gauge and CKM }} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2} / M_{W}^{2}\right)
$$

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

The $B_{s} \rightarrow \mu \mu$ decay within the $S M$: structure

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

The $B_{s} \rightarrow \mu \mu$ decay within the $S M$: structure

V $B R\left[B_{s} \rightarrow \mu \mu\right]$ has the following structure

The $B_{s} \rightarrow \mu \mu$ decay within the SM : structure

V $\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

hadronic matrix element

Recall: the final state is purely leptonic

The only non-null matrix elem' is:

$$
\langle 0| \bar{b} \gamma^{\alpha} \gamma_{5} s\left|B_{s}(p)\right\rangle=-i f_{B_{s}} p^{\alpha}
$$

hadronic \quad Recall: the final state is purely leptonic
$\square \mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

($\sqrt{ } \mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

- Easy to understand: = take the B momentum p
$=$ contract p with the lepton current, using $p=p\left(\mu^{+}\right)+p\left(\mu^{-}\right)$
$=$ use e.o.m. for μ^{+}and μ^{-}

The $B_{s} \rightarrow \mu \mu$ decay within the SM : structure

$\square \mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ has the following structure

- Easy to understand: = take the B momentum p
$=$ contract p with the lepton current, using $p=p\left(\mu^{+}\right)+p\left(\mu^{-}\right)$
$=$ use e.o.m. for μ^{+}and μ^{-}
chiral suppression
- Masses' \& couplings' dependence of the BR =

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
$\boxed{\square}$ The main sources of error within the BR formula are:

$$
\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
$\sqrt[\square]{ }$ The main sources of error within the BR formula are:

$$
\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

Thus, one can write the following phenomenological expression for the BR

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]=3.23 \cdot 10^{-9} \cdot\left(\frac{\tau_{B_{s}}}{1.466 \mathrm{ps}}\right) \cdot\left(\frac{\operatorname{Re}\left(V_{t b}^{*} V_{t s}\right)}{4.05 \cdot 10^{-2}}\right)^{2} \cdot\left(\frac{f_{B_{s}}}{227 \mathrm{MeV}}\right)^{2} \cdot\left(\frac{M_{t}}{173.2 \mathrm{GeV}}\right)^{3.07}
$$

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
(The main sources of error within the BR formula are:

$$
\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

Thus, one can write the following phenomenological expression for the BR

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]=3.23 \cdot 10^{-9} \cdot\left(\frac{\tau_{B_{s}}}{1.466 \mathrm{ps}}\right) \cdot\left(\frac{\operatorname{Re}\left(V_{t b}^{*} V_{t s}\right)}{4.05 \cdot 10^{-2}}\right)^{2} \cdot\left(\frac{f_{B_{s}}}{227 \mathrm{MeV}}\right)^{2} \cdot\left(\frac{M_{t}}{173.2 \mathrm{GeV}}\right)^{3.07}
$$

■ Using this expression, one can easily work out the main error components as follows

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
(The main sources of error within the BR formula are:

$$
\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

Thus, one can write the following phenomenological expression for the BR

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]=3.23 \cdot 10^{-9} \cdot\left(\frac{\tau_{B_{s}}}{1.466 \mathrm{ps}}\right) \cdot\left(\frac{\operatorname{Re}\left(V_{t b}^{*} V_{t s}\right)}{4.05 \cdot 10^{-2}}\right)^{2} \cdot\left(\frac{f_{B_{s}}}{227 \mathrm{MeV}}\right)^{2} \cdot\left(\frac{M_{t}}{173.2 \mathrm{GeV}}\right)^{3.07}
$$

■ Using this expression, one can easily work out the main error components as follows

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
T. The main sources of error within the BR formula are:

$$
\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left.\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m}}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

Thus, one can write the following phenomenological expression for the BR

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]=3.23 \cdot 10^{-9} \cdot\left(\frac{\tau_{B_{s}}}{1.466 \mathrm{ps}}\right) \cdot\left(\frac{\operatorname{Re}\left(V_{t b}^{*} V_{t s}\right)}{4.05 \cdot 10^{-2}}\right)^{2} \cdot\left(\frac{f_{B_{s}}}{227 \mathrm{MeV}}\right)^{2} \cdot\left(\frac{M_{t}}{173.2 \mathrm{GeV}}\right)^{3.07}
$$

$\boxed{\square}$ Using this expression, one can easily work out the main error components as follows

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
T. The main sources of error within the BR formula are:

$$
\left.\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}}\right) \times\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

Thus, one can write the following phenomenological expression for the BR

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]=3.23 \cdot 10^{-9} \cdot\left(\frac{\tau_{B_{s}}}{1.466 \mathrm{ps}}\right) \cdot\left(\frac{\operatorname{Re}\left(V_{t b}^{*} V_{t s}\right)}{4.05 \cdot 10^{-2}}\right)^{2} \cdot\left(\frac{f_{B_{s}}}{227 \mathrm{MeV}}\right)^{2} \cdot\left(\frac{M_{t}}{173.2 \mathrm{GeV}}\right)^{3.07}
$$

$\boxed{\square}$ Using this expression, one can easily work out the main error components as follows

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: parametric
T. The main sources of error within the BR formula are:

$$
\left.B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right] \simeq \frac{1}{\Gamma_{s}} \times\left.\left(\frac{G_{F}^{2} \alpha_{\mathrm{e} . \mathrm{m} .}^{2}}{16 \pi^{3} s_{W}^{4}}\right) \cdot\left|V_{t b}^{*} V_{t s}\right|\right|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}\left(m_{t}^{2}\right\rangle M_{W}^{2}\right)
$$

Thus, one can write the following phenomenological expression for the BR

$$
B R\left[B_{s} \rightarrow \mu^{+} \mu^{-}\right]=3.23 \cdot 10^{-9} \cdot\left(\frac{\tau_{B_{s}}}{1.466 \mathrm{ps}}\right) \cdot\left(\frac{\operatorname{Re}\left(V_{t b}^{*} V_{t s}\right)}{4.05 \cdot 10^{-2}}\right)^{2} \cdot\left(\frac{f_{B_{s}}}{227 \mathrm{MeV}}\right)^{2} \cdot\left(\frac{M_{t}}{173.2 \mathrm{GeV}}\right)^{3.07}
$$

(Using this expression, one can easily work out the main error components as follows

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$: theory

A qualification about the $f_{B s}$ error

D. Guadagnoli, $B_{s} \rightarrow \mu \mu:$ theory

A qualification about the $f_{B s}$ error

$\boxed{\square}$ Actually, there are different schools of thought as to whether the above $f_{B s}$ error is "the right choice"

A qualification about the $f_{B s}$ error

$\boxed{\square}$ Actually, there are different schools of thought as to whether the above $f_{B s}$ error is "the right choice"

- The FLAG collab. quotes as reference error the weighted average among the most recent (= unquenched) lattice calculations: 4.5 MeV

A qualification about the $f_{B s}$ error

$\boxed{\square}$ Actually, there are different schools of thought as to whether the above f_{Bs} error is "the right choice"

- The FLAG collab. quotes as reference error the weighted average among the most recent (= unquenched) lattice calculations: 4.5 MeV

This average is however dominated by one determination (HPQCD collab.), that has about half the error of the other ones.

In $B R\left[B_{s} \rightarrow \mu \mu\right]$, this choice makes the $f_{B s}$ error subleading with respect to the CKM error.

A qualification about the $f_{B s}$ error

$\boxed{\square}$ Actually, there are different schools of thought as to whether the above f_{Bs} error is "the right choice"

- The FLAG collab. quotes as reference error the weighted average among the most recent (= unquenched)
lattice calculations: 4.5 MeV

This average is however dominated by one determination (HPQCD collab.), that has about half the error of the other ones.

In $B R\left[B_{s} \rightarrow \mu \mu\right]$, this choice makes the $f_{B s}$ error subleading with respect to the CKM error.

- We adopted the more conservative approach of estimating the error from the spread of the central values.

A qualification about the $f_{B s}$ error

$\boxed{\square}$ Actually, there are different schools of thought as to whether the above f_{Bs} error is "the right choice"

- The FLAG collab. quotes as reference error the weighted average among the most recent (= unquenched)
lattice calculations: 4.5 MeV

This average is however dominated by one determination (HPQCD collab.), that has about half the error of the other ones.

In $B R\left[B_{s} \rightarrow \mu \mu\right]$, this choice makes the $f_{B s}$ error subleading with respect to the CKM error.

- We adopted the more conservative approach of estimating the error from the spread of the central values.

This issue is still debatable to some extent (or at least it would be so in case of a SM vs. exp discrepancy)
$B R\left[B_{s} \rightarrow \mu \mu\right]$ systematics: the initial state oscillates
\square The $B_{s} \rightarrow \mu \mu$ rate is measured as follows:

$B R\left[B_{s} \rightarrow \mu \mu\right]$ systematics: the initial state oscillates
\square The $B_{s} \rightarrow \mu \mu$ rate is measured as follows:

D. Guadagnoli, $B_{s} \rightarrow \mu \mu$: theory
$B R\left[B_{s} \rightarrow \mu \mu\right]$ systematics: the initial state oscillates
\square The $B_{s} \rightarrow \mu \mu$ rate is measured as follows:

V How are $B R_{\mathrm{th}}$ and $B R_{\text {exp }}$ connected

$$
\frac{\mathrm{BR}_{\mathrm{th}}}{1-y_{s}}=\mathrm{BR}_{\mathrm{exp}}
$$

$B R\left[B_{s} \rightarrow \mu \mu\right]$ systematics: the initial state oscillates

\square The $B_{s} \rightarrow \mu \mu$ rate is measured as follows:

V How are $B R_{t h}$ and $B R_{\text {exp }}$ connected

$$
\begin{gathered}
\frac{\mathrm{BR}_{\mathrm{th}}}{1-y_{s}}=\mathrm{BR}_{\mathrm{exp}} \\
\text { with } y_{s}=\Delta \Gamma_{s} /\left(2 \Gamma_{s}\right) \simeq 0.088
\end{gathered}
$$

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ systematics: the initial state oscillates

 Descotes, Matias, Virto, PRD 12;\square The $B_{s} \rightarrow \mu \mu$ rate is measured as follows:

See:

- LHCb 1212.4140
- latest HFAG average: 1207.1158

■ Intuitive picture of this correction

Recall: $\quad \mathrm{BR}_{\mathrm{th}} \propto \frac{1}{\Gamma_{s}}$

Then one finds:

$$
\frac{1}{\Gamma_{s}} \times \frac{1}{1-\Delta \Gamma_{s} /\left(2 \Gamma_{s}\right)}=\frac{1}{\Gamma_{s}} \frac{\Gamma_{s}}{\Gamma_{\text {long }}}
$$

Namely the 1/(1-ys) factor just "renormalizes" $B R_{t h}$ to the width of the long-lived B_{s} eigenstate

$B R\left[B_{s} \rightarrow \mu \mu\right]$ error: systematics

Initial-state effect

- Effect of $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ oscillations: $\quad B R_{\text {exp }}=B R_{\text {th }} \frac{1}{1-\Delta \Gamma_{s} / 2 \Gamma_{s}}=B R_{\mathrm{th}} \times 1.09$
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$: theory

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: systematics

Initial-state effect

- Effect of $B_{s}-B_{s}$ oscillations:

De Bruyn et al., PRL 12 \& PRD 12

$$
B R_{\mathrm{exp}}=B R_{\mathrm{th}} \frac{1}{1-\Delta \Gamma_{s} / 2 \Gamma_{s}}=B R_{\mathrm{th}} \times 1.09
$$

- Effect of soft undetected photons in the final state:

$$
B R_{\text {exp }}=B R_{\mathrm{th}} \times 0.89
$$

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: systematics

- Effect of $B_{s}-B_{s}$ oscillations:

De Bruyn et al., PRL 12 \& PRD 12

$$
B R_{\text {exp }}=B R_{\text {th }} \frac{1}{1-\Delta \Gamma_{s} / 2 \Gamma_{s}}=B R_{\text {th }} \times 1.09
$$

- Effect of soft undetected photons in the final state:

$$
B R_{\text {exp }}=B R_{\mathrm{th}} \times 0.89
$$

Buras, Girrbach, DG, Isidori, EPJC 13

- Implied systematic error comparable to $f_{B s}$ error

Albeit impact arguably small (\sim O(1\%))
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: systematics

Initial-state effect

- Effect of $B_{s}-B_{s}$ oscillations:

De Bruyn et al., PRL 12 \& PRD 12

$$
B R_{\text {exp }}=B R_{\text {th }} \frac{1}{1-\Delta \Gamma_{s} / 2 \Gamma_{s}}=B R_{\mathrm{th}} \times 1.09
$$

- Effect of soft undetected photons in the final state:

$$
B R_{\text {exp }}=B R_{\mathrm{th}} \times 0.89
$$

Buras, Girrbach, DG, Isidori, EPJC 13

- Incomplete knowledge of NLO EW corrections:
- Implied systematic error comparable to $f_{B s}$ error

Albeit impact arguably small (\sim O(1\%))
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

- Final answer: full calculation
- NLO EW: Bobeth et al., 1311.1348, PRD14
- SM pred.: Bobeth et al., 1311.0903, PRL14
- See also NNLO QCD: Hermann et al., 1311.1347, JHEP13

$\mathrm{BR}\left[\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right]$ error: systematics

Initial-state effect
 effect

- Effect of $\mathbf{B}_{\mathrm{s}}-\overline{\mathbf{B}}_{\mathrm{s}}$ oscillations:

De Bruyn et al., PRL 12 \& PRD 12

$$
B R_{\exp }=B R_{\mathrm{th}} \frac{1}{1-\Delta \Gamma_{s} / 2 \Gamma_{s}}=B R_{\mathrm{th}} \times 1.09
$$

- Effect of soft undetected photons in the final state:

$$
B R_{\text {exp }}=B R_{\mathrm{th}} \times 0.89
$$

Taken into account by exp

Buras, Girrbach, DG, Isidori, EPJC 13

- Incomplete knowledge of NLO EW corrections:

- Implied systematic error comparable to $f_{B s}$ error

Albeit impact arguably small (\sim O(1\%))
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

- Final answer: full calculation
- NLO EW: Bobeth et al., 1311.1348, PRD14
- SM pred.: Bobeth et al., 1311.0903, PRL14
- See also NNLO QCD: Hermann et al., 1311.1347, JHEP13

All in all, theory (SM) ready to match expected experimental accuracy
D. Guadagnoli, $B_{s} \rightarrow \mu \mu$: theory

Some considerations on

$B_{s} \rightarrow \mu \mu$ beyond the SM

How to probe scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

$\sqrt{\square}$ Back to the initial-state systematic effect. For general new physics, the correction factor becomes

$$
\mathrm{BR}_{\mathrm{th}} \cdot\left(\frac{1+A_{\Delta \Gamma} y_{s}}{1-y_{s}^{2}}\right)=\mathrm{BR}_{\mathrm{exp}}
$$

How to probe scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

■ Back to the initial-state systematic effect. For general new physics, the correction factor becomes

$$
\mathrm{BR}_{\mathrm{th}} \cdot\left(\frac{1+A_{\Delta \mathrm{L}} y_{s}}{1-y_{s}^{2}}\right)=\mathrm{BR}_{\mathrm{exp}}
$$

How to probe scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

(Back to the initial-state systematic effect. For general new physics, the correction factor becomes

$$
\mathrm{BR}_{\mathrm{th}} \cdot\left(\frac{\left.1+A_{\Delta \mathrm{r}}\right) y_{s}}{1-y_{s}^{2}}\right)=\mathrm{BR}_{\mathrm{exp}}
$$

where

$$
A_{\Delta \Gamma}=\frac{|P|^{2} \cos \left(2 \Phi_{P}\right)-|S|^{2} \cos \left(2 \Phi_{S}\right)}{|P|^{2}+|S|^{2}}
$$

normalized Wilson coeff
for O_{A} (= SM operator)
and O_{P} (and primed counterparts)

$$
P_{S M}=1
$$

How to probe scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

$\boxed{\square}$ Back to the initial-state systematic effect. For general new physics, the correction factor becomes

$$
\mathrm{BR}_{\mathrm{th}} \cdot\left(\frac{\left.1+A_{\Delta \mathrm{r}}\right) y_{s}}{1-y_{s}^{2}}\right)=\mathrm{BR}_{\mathrm{exp}}
$$

where

$$
\begin{aligned}
& A_{\Delta \Gamma}=\frac{|P|^{2} \cos \left(2 \Phi_{P}\right)-|S|^{2} \cos \left(2 \Phi_{S}\right)}{|P|^{2}+|S|^{2}} \\
& \text { eff } \\
& \text { r) } \quad \begin{array}{l}
\text { normalized Wilson coeff } \\
\text { for } \mathrm{O}_{\mathrm{s}} \\
\text { (and primed counterpart) } \\
\text { rennerparts }^{S_{\mathrm{SM}}=0}
\end{array}
\end{aligned}
$$

How to probe scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

$\boxed{\square}$ Back to the initial-state systematic effect. For general new physics, the correction factor becomes

$$
\mathrm{BR}_{\mathrm{th}} \cdot\left(\frac{1+A_{\Delta \mathrm{r}} y_{s}}{1-y_{s}^{2}}\right)=\mathrm{BR}_{\mathrm{exp}}
$$

where
NP phases from P and S

$$
A_{\Delta \Gamma}=\frac{|P|^{2} \cos \left(2 \Phi_{P}\right)-|S|^{2} \cos \left(2 \Phi_{S}\right)}{|P|^{2}+|S|^{2}}
$$

normalized Wilson coeff
normalized Wilson coeff
for O_{S}
(and primed counterpart)
$S_{\mathrm{SM}}=0$

How to probe scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

$\boxed{\square}$ Back to the initial-state systematic effect. For general new physics, the correction factor becomes

$$
\mathrm{BR}_{\mathrm{th}} \cdot\left(\frac{1+A_{\Delta \mathrm{r}} y_{s}}{1-y_{s}^{2}}\right)=\mathrm{BR}_{\exp }
$$

where

NP phases from P and S

$$
A_{\Delta \Gamma}=
$$

$$
P_{\mathrm{sm}}=1
$$

- this NP could involve CPV or not
(The crucial point is that $A_{\Delta r}$ can be extracted from

$$
\begin{gathered}
\substack{B_{s} \rightarrow \mu \mu \\
\text { effective } \\
\text { lifetime }}
\end{gathered} \tau_{\mu \mu} \equiv \frac{\int t d t\left(\Gamma\left(B_{s}(t) \rightarrow \mu \mu\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow \mu \mu\right)\right)}{\int d t\left(\Gamma\left(B_{s}(t) \rightarrow \mu \mu\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow \mu \mu\right)\right)}
$$

$\boxed{\square}$ The crucial point is that $A_{\Delta r}$ can be extracted from

$$
\begin{aligned}
& B_{s} \rightarrow \mu \mu \\
& \text { effective } \\
& \text { lifetime }
\end{aligned}
$$

$$
\tau_{\mu \mu} \equiv \frac{\int t d t\left(\Gamma\left(B_{s}(t) \rightarrow \mu \mu\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow \mu \mu\right)\right)}{\int d t\left(\Gamma\left(B_{s}(t) \rightarrow \mu \mu\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow \mu \mu\right)\right)}
$$

$$
=\text { known function of } A_{\Delta r}, \underbrace{\tau_{\mathrm{Bs}} \text { and } \mathrm{y}_{\mathrm{s}}}
$$

Scalar operators and their phases thru $B_{s} \rightarrow \mu \mu$

\square The crucial point is that $A_{\Delta \Gamma}$ can be extracted from

$$
\begin{aligned}
& B_{s} \rightarrow \mu \mu \\
& \text { effective } \\
& \text { lifetime }
\end{aligned}
$$

$$
\tau_{\mu \mu} \equiv \frac{\int t d t\left(\Gamma\left(B_{s}(t) \rightarrow \mu \mu\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow \mu \mu\right)\right)}{\int d t\left(\Gamma\left(B_{s}(t) \rightarrow \mu \mu\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow \mu \mu\right)\right)}
$$

$$
=\text { known function of } A_{\Delta \Gamma}, \underbrace{\tau_{B s} \text { and } y_{s}}
$$

$$
\text { (After having measured } \left.A_{\Delta \Gamma} \neq 1\right)
$$

- To clarify whether it will be new CPV or not will call for measuring the time-dependent CP asymmetry
- This quantity requires tagging \& time-dependence measurements in an ultra-rare decay

Conclusions

$\square B_{s} \rightarrow \mu \mu$ SM prediction

- Systematics is under control - within below O(1\%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error

Conclusions

$\square \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu \mathrm{SM}$ prediction

- Systematics is under control - within below O(1\%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error
$\nabla B_{s} \rightarrow \mu \mu$ beyond the SM
- Exquisite probe of the Yukawa sectorScalar operators $\mathrm{O}_{s, \mathrm{P}}{ }^{(\text {(') }}$ and their phases

Conclusions

$\square \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu \mathrm{SM}$ prediction

- Systematics is under control - within below O(1\%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error
$\nabla B_{s} \rightarrow \mu \mu$ beyond the SM
- Exquisite probe of the Yukawa sector

Scalar operators $O_{s, P}{ }^{\left({ }^{\prime}\right)}$ and their phases

- Excellent probe of anomalous Z-to-quark couplings

Vector operators $\mathrm{O}_{A}{ }^{(\prime)}$

Conclusions

$\nabla \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ SM prediction

- Systematics is under control - within below O(1\%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error
$\nabla \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ beyond the SM
- Exquisite probe of the Yukawa sectorScalar operators $O_{s, P}{ }^{\left({ }^{\prime}\right)}$ and their phases
- Excellent probe of anomalous Z-to-quark couplings

Vector operators $\mathrm{O}_{\mathrm{A}}{ }^{\left({ }^{\prime}\right)}$

Dos
Constraining power superior to Z-peak observables measured at LEP (within reasonable flavor frameworks such as MFV or partial compositeness)

