$B_s \rightarrow \mu \mu$ within (mostly) the SM

Diego Guadagnoli LAPTh Annecy

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

$O_A \equiv (\overline{b} \boldsymbol{\gamma}_L^{\alpha} s) (\overline{\mu} \boldsymbol{\gamma}_{\alpha} \boldsymbol{\gamma}_5 \mu)$	$O'_{A} \equiv (\overline{b} \gamma_{R}^{\alpha} s) (\overline{\mu} \gamma_{\alpha} \gamma_{5} \mu)$
$O_s \equiv (\bar{b} P_L s)(\bar{\mu}\mu)$	$O'_{s} \equiv (\overline{b} P_{R} s)(\overline{\mu} \mu)$
$O_P \equiv (\overline{b} P_L s)(\overline{\mu} \gamma_5 \mu)$	$O'_P \equiv (\overline{b} P_R s)(\overline{\mu} \gamma_5 \mu)$

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator	
$O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$	$O'_{A} \equiv \left(\bar{b} \boldsymbol{\gamma}_{R}^{\alpha} s\right) (\bar{\mu} \boldsymbol{\gamma}_{\alpha} \boldsymbol{\gamma}_{5} \mu$
$O_s \equiv (\bar{b} P_L s)(\bar{\mu} \mu)$	$O'_{s} \equiv (\overline{b} P_{R} s)(\overline{\mu} \mu)$
$O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$	$O'_{P} \equiv (\bar{b}P_{R}s)(\bar{\mu}\gamma_{5}\mu)$

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator $O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$ $O'_A \equiv (\bar{b} \gamma_R^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$ $O_S \equiv (\bar{b} P_L s)(\bar{\mu} \mu)$ $O'_S \equiv (\bar{b} P_R s)(\bar{\mu} \mu)$ $O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$ $O'_P \equiv (\bar{b} P_R s)(\bar{\mu} \gamma_5 \mu)$

Why are new contributions to scalar operators actually plausible?

\mathbf{N}

Model-independent approach: effective operators

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator	
$\left(O_A \equiv \left(\overline{b} \boldsymbol{\gamma}_L^{\alpha} s\right) (\overline{\mu} \boldsymbol{\gamma}_{\alpha} \boldsymbol{\gamma}_5 \mu)\right)$	$O'_{A} \equiv (\bar{b} \gamma_{R}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$
$O_s \equiv (\overline{b} P_L s)(\overline{\mu} \mu)$	$O'_{s} \equiv (\overline{b} P_{R} s)(\overline{\mu} \mu)$
$O_P \equiv (\overline{b} P_L s)(\overline{\mu} \gamma_5 \mu)$	$O'_{P} \equiv (\overline{b} P_{R} s)(\overline{\mu} \gamma_{5} \mu)$

.....

Why are new contributions to scalar operators actually plausible?

Observation:

the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero (g \rightarrow 0).

Credits: Gino Isidori

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator	
$(O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu))$	$O'_{A} \equiv (\bar{b} \gamma_{R}^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_{5} \mu)$
$O_s \equiv (\overline{b} P_L s)(\overline{\mu} \mu)$	$O'_{s} \equiv (\bar{b} P_{R} s)(\bar{\mu} \mu)$
$O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$	$O'_{P} \equiv (\overline{b} P_{R} s)(\overline{\mu} \gamma_{5} \mu)$

Why are new contributions to scalar operators actually plausible?

Observation:

the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero (g \rightarrow 0).

 $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$

.....

with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM

Credits: Gino Isidor

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator	
$\left(O_A \equiv \left(\bar{b} \boldsymbol{\gamma}_L^{\alpha} s\right) (\bar{\mu} \boldsymbol{\gamma}_{\alpha} \boldsymbol{\gamma}_{5} \mu)\right)$	$O'_{A} \equiv (\overline{b} \gamma_{R}^{\alpha} s)(\overline{\mu} \gamma_{\alpha} \gamma_{5} \mu)$
$O_s \equiv (\overline{b} P_L s)(\overline{\mu} \mu)$	$O'_{s} \equiv (\bar{b} P_{R} s)(\bar{\mu} \mu)$
$O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$	$O'_P \equiv (\bar{b} P_R s)(\bar{\mu} \gamma_5 \mu)$

Why are new contributions to scalar operators actually plausible?

Observation:

the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero (g \rightarrow 0).

 A_{R}

 $A_{B_s \to \mu\mu} \propto G_F \cdot \alpha_{e.m.} \cdot Y(M_t^2/M_W^2)$

.....

with $Y(\frac{M_t^2}{M_W^2}) \sim \frac{M_t^2}{M_W^2}$ because of GIM

• Hence the relevant proportionality is:

$$_{g \to \mu\mu} \propto \frac{1}{v^2} \cdot g^2 \cdot \frac{M_{\mu}^2}{M_{\mu}^2}$$

D. Guadagnoli,
$$B_s \rightarrow \mu \mu$$
 : theory

Credits: Gino Isidor

Beyond the SM, a total of 6 operators can contribute:

(One may write also two tensor operators, but their matrix elements vanish for this process.)

SM operator	
$O_A \equiv (\bar{b} \gamma_L^{\alpha} s)(\bar{\mu} \gamma_{\alpha} \gamma_5 \mu)$	$O'_{A} \equiv \left(\bar{b} \boldsymbol{\gamma}_{R}^{\alpha} s\right) (\bar{\mu} \boldsymbol{\gamma}_{\alpha} \boldsymbol{\gamma}_{5} \mu)$
$O_s \equiv (\bar{b} P_L s)(\bar{\mu} \mu)$	$O'_{s} \equiv (\overline{b} P_{R} s)(\overline{\mu} \mu)$
$O_P \equiv (\bar{b} P_L s)(\bar{\mu} \gamma_5 \mu)$	$O'_{P} \equiv (\bar{b}P_{R}s)(\bar{\mu}\gamma_{5}\mu)$

.....

Why are new contributions to scalar operators actually plausible?

Observation:

the $B_s \rightarrow \mu\mu$ amplitude remains a well-defined object in the limit where gauge interactions go to zero (g \rightarrow 0).

Credits: Gino Isidor

 \blacksquare BR[B_s \rightarrow µµ] has the following structure

$$BR[B_{s} \to \mu^{+}\mu^{-}] \simeq \frac{1}{\Gamma_{s}} \times \left(\frac{G_{F}^{2}\alpha_{e.m.}^{2}}{16\pi^{3}s_{W}^{4}}\right) \cdot |V_{tb}^{*}V_{ts}|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}(m_{t}^{2}/M_{W}^{2})$$

$$BR[B_{s} \to \mu^{+}\mu^{-}] \simeq \frac{1}{\Gamma_{s}} \times \left(\frac{G_{F}^{2}\alpha_{e.m.}^{2}}{16\pi^{3}s_{W}^{4}}\right) \cdot |V_{tb}^{*}V_{ts}|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}(m_{t}^{2}/M_{W}^{2})\right)$$

couplings: gauge and CKM

$$BR[B_{s} \rightarrow \mu^{+}\mu^{-}] \simeq \frac{1}{\Gamma_{s}} \times \left(\frac{G_{F}^{2}\alpha_{e.m.}^{2}}{16\pi^{3}s_{W}^{4}}\right) \cdot |V_{tb}^{*}V_{ts}|^{2} \cdot f_{B_{s}}^{2} m_{B_{s}} \cdot m_{\mu}^{2} \cdot Y^{2}(m_{t}^{2}/M_{W}^{2})$$

couplings: gauge and CKM hadronic matrix elem'

$$BR[B_{s} \rightarrow \mu^{+}\mu^{-}] \simeq \frac{1}{\Gamma_{s}} \times \underbrace{\left(\frac{G_{F}^{2}\alpha_{e.m.}^{2}}{16\pi^{3}s_{W}^{4}}\right) \cdot \left|V_{tb}^{*}V_{ts}\right|^{2}}_{\text{couplings: gauge and CKM}} \int \frac{f_{B_{s}}^{2}}{p_{B_{s}}^{2}} m_{B_{s}} \frac{m_{\mu}^{2}}{m_{\mu}^{2}} Y^{2}(m_{t}^{2}/M_{W}^{2})$$

The main sources of error within the BR formula are:

$$BR[B_s \to \mu^+ \mu^-] \simeq \underbrace{\frac{1}{\Gamma_s}} \times \left(\frac{G_F^2 \alpha_{e.m.}^2}{16 \pi^3 s_W^4} \right) \cdot \underbrace{\left| V_{tb}^* V_{ts} \right|^2} \cdot \underbrace{\left| f_{B_s}^2 m_{B_s} \cdot m_{\mu}^2 \cdot Y^2(m_t^2) M_W^2 \right|}_{W}$$

$$BR[B_s \rightarrow \mu\mu]$$
 error: parametric

The main sources of error within the BR formula are:

$$BR[B_s \to \mu^+ \mu^-] \simeq \frac{1}{\Gamma_s} \times \left(\frac{G_F^2 \alpha_{e.m.}^2}{16 \pi^3 s_W^4}\right) \cdot \left|V_{tb}^* V_{ts}\right|^2 \cdot \left(f_{B_s}^2 m_{B_s} \cdot m_{\mu}^2 \cdot Y^2(m_t^2) M_W^2\right)$$

Thus, one can write the following phenomenological expression for the BR

$$BR[B_s \to \mu^+ \mu^-] = 3.23 \cdot 10^{-9} \cdot \left(\frac{\tau_{B_s}}{1.466 \,\mathrm{ps}}\right) \cdot \left(\frac{\mathrm{Re}(V_{tb}^* V_{ts})}{4.05 \cdot 10^{-2}}\right)^2 \cdot \left(\frac{f_{B_s}}{227 \,\mathrm{MeV}}\right)^2 \cdot \left(\frac{M_t}{173.2 \,\mathrm{GeV}}\right)^{3.07}$$

top "pole" mass here

Total relative error expected for $BR[B_s \rightarrow \mu\mu]$: **about 8.5%**

D. Guadagnoli, $B_s \rightarrow \mu\mu$: theory

A qualification about the $\mathrm{f}_{_{\mathrm{Bs}}}$ error

More on this Actually, there are different schools of thought as to whether the above f_{Rs} error is "the right choice" in Benoît's talk The FLAG collab. guotes as reference error the weighted average among the most recent (= unguenched) • lattice calculations: 4.5 MeV This average is however dominated by one determination (HPQCD collab.), that has about half the error of the other ones. In BR[B_s $\rightarrow \mu\mu$], this choice makes the f_{Bs} error subleading with respect to the CKM error. We adopted the more conservative approach of estimating the error from the spread of the central values.

$\text{BR[B}_{s} \rightarrow \mu\mu\text{]}$ systematics: the initial state oscillates

Dunietz, Fleischer, Nierste, PRD 01; Descotes, Matias, Virto, PRD 12; De Bruyn *et al., PRL 12 & PRD 12*

The $B_s \rightarrow \mu \mu$ rate is measured as follows:

Dunietz, Fleischer, Nierste, PRD 01;
Descotes, Matias, Virto, PRD 12;
De Bruyn et al., PRL 12 & PRD 12

the b hadronizes into a \overline{B}_s	
or	att = 0
the \overline{b} hadronizes into a B_s	

Dunietz, Fleischer, Nierste, PRD 01; Descotes, Matias, Virto, PRD 12; De Bruyn *et al., PRL 12 & PRD 12*

Mathebasic Sector The $B_s \rightarrow \mu\mu$ rate is measured as follows:

Dunietz, Fleischer, Nierste, PRD 01; Descotes, Matias, Virto, PRD 12; De Bruyn *et al., PRL 12 & PRD 12*

Mathebasic Sector The $B_s \rightarrow \mu\mu$ rate is measured as follows:

How are BR_{th} and BR_{exp} connected

$$\frac{BR_{th}}{1 - y_s} = BR_{exp}$$

Dunietz, Fleischer, Nierste, PRD 01; Descotes, Matias, Virto, PRD 12; De Bruyn *et al., PRL 12 & PRD 12*

M The $B_s \rightarrow \mu \mu$ rate is measured as follows:

Some considerations on $B_s \rightarrow \mu\mu$ beyond the SM

$$BR_{th} \cdot \left(\frac{1 + A_{\Delta\Gamma} y_s}{1 - y_s^2}\right) = BR_{exp}$$

$$BR_{th} \cdot \left(\frac{1 + A_{\Delta \Gamma} y_s}{1 - y_s^2} \right) = BR_{exp}$$

$$BR_{th} \cdot \left(\frac{1 + A_{\Delta\Gamma} y_s}{1 - y_s^2}\right) = BR_{exp}$$

where

$$BR_{th} \cdot \left(\frac{1 + A_{\Delta \Gamma} y_s}{1 - y_s^2} \right) = BR_{exp}$$

where

D. Guadagnoli, ${\rm B_s} \rightarrow \mu \mu$: theory

Scalar operators and their phases thru ${\rm B_s} \to \mu \mu$

Dunietz, Fleischer, Nierste, PRD 01; De Bruyn *et al.,* PRL 12 & PRD 12

The crucial point is that $A_{\Delta\Gamma}$ can be extracted from

$$\begin{aligned} \mathbf{B}_{s} \to \mu \mu \\ \text{effective} \\ \text{lifetime} \end{aligned} \quad \mathbf{\tau}_{\mu\mu} \; \equiv \; \frac{\int t \, dt \left[\Gamma \left(B_{s}(t) \to \mu \mu \right) + \Gamma \left(\bar{B}_{s}(t) \to \mu \mu \right) \right]}{\int dt \left[\Gamma \left(B_{s}(t) \to \mu \mu \right) + \Gamma \left(\bar{B}_{s}(t) \to \mu \mu \right) \right]} \end{aligned}$$

Scalar operators and their phases thru $B_s \rightarrow \mu \mu$

Dunietz, Fleischer, Nierste, PRD 01; De Bruyn *et al.*, PRL 12 & PRD 12

Scalar operators and their phases thru $B_s \rightarrow \mu \mu$

Dunietz, Fleischer, Nierste, PRD 01; De Bruyn *et al.*, PRL 12 & PRD 12

${\fbox B}_{s} \rightarrow \mu \mu \ \ SM \ prediction$

- Systematics is under control within below O(1%)
- *Parametrics soon (or already?) dominated by CKM error*
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error

$\mathbf{M} = \mathbf{B}_{s} \rightarrow \mu \mu$ SM prediction

- Systematics is under control within below O(1%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error

$\mathbf{\overline{M}} \ \mathbf{B}_{s} \rightarrow \mu \mu$ beyond the SM

• Exquisite probe of the Yukawa sector

Scalar operators $O_{S,P}^{(\prime)}$ and their phases

$\mathbf{M} = \mathbf{B}_{s} \rightarrow \mu \mu$ SM prediction

- Systematics is under control within below O(1%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error

$\mathbf{\overline{M}} \ \mathbf{B}_{s} \rightarrow \mu \mu$ beyond the SM

- Exquisite probe of the Yukawa sector
- Scalar operators $O_{S,P}^{(\prime)}$ and their phases
- Excellent probe of anomalous Z-to-quark couplings

Vector operators $O_A^{(\prime)}$

$\mathbf{M} = \mathbf{B}_{s} \rightarrow \mu \mu$ SM prediction

- Systematics is under control within below O(1%)
- Parametrics soon (or already?) dominated by CKM error
- Outlook: The SM error is, and will remain, negligible w.r.t. exp error

$\mathbf{N}_{s} \rightarrow \mu\mu$ beyond the SM

Exquisite probe of the Yukawa sector

- Scalar operators $O_{S,P}^{(')}$ and their phases
- Excellent probe of anomalous Z-to-quark couplings

Vector operators $O_A^{(\prime)}$

Constraining power superior to Z-peak observables measured at LEP (within reasonable flavor frameworks such as MFV or partial compositeness)

DG, Isidori, PLB13

D. Guadagnoli, $B_s \rightarrow \mu \mu$: theory