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  A qualification about the f
Bs

 error

Input

Contribution to 
BR relative error

τB s=
1.466(31)ps

Re(V tb
* V ts)=

4.05(8)⋅10−2
f B s=

227(8)MeV
M t=

173.2(0.9)GeV

2% 4% 7 % 1.6 %

pdgLive CKMfitter
or UTfit

LQCD average
(central value 

from C. Davies)

Tevatron average 
on 5.8/fb: 1107.5255

Actually, there are different schools of thought as to whether the above f
Bs

 error is “the right choice”☑

The FLAG collab. quotes as reference error the weighted average among the most recent (= unquenched) 
lattice calculations:  4.5 MeV

•

 This average is however dominated by one determination (HPQCD collab.), that has about half the error 
of the other ones.

We adopted the more conservative approach of estimating the error from the spread of the central values.•

More on this in Benoît's talk

In BR[B
s
 → µµ], this choice makes the f

Bs
 error subleading with respect to the CKM error.

This issue is still debatable to some extent

(or at least it would be so in case of a SM vs. exp discrepancy)

D. Guadagnoli, B
s
 → µµ : theory
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This is what exp measures

How are BR
th
 and BR

exp
 connected☑

BR th

1− y s
= BRexp

with y s = ΔΓ s /(2Γs) ≃ 0.088

See:

• LHCb 1212.4140

• latest HFAG average:          
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The B
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 → µµ rate is measured as follows:

b b
production

the B
s
 (t)

the B
s
 (t)

or evolves with time and 
decays into µµ

the b hadronizes into a B
s

the b hadronizes into a B
s

or at t  = 0

☑

This is what theory calculates:
BR[B

s
(t = 0) → µµ]

This is what exp measures

How are BR
th
 and BR

exp
 connected☑

BR th

1− y s
= BRexp

with y s = ΔΓ s /(2Γs) ≃ 0.088

Recall: BR th ∝ 1
Γ s

Then one finds: 1
Γs

× 1
1−ΔΓ s /(2Γs)

= 1
Γ s

Γs
Γlong

Namely the 1/(1–y
s
) factor just “renormalizes” BR

th
 to the width 

of the long-lived B
s
 eigenstate

See:

• LHCb 1212.4140

• latest HFAG average:          
                    1207.1158

Intuitive picture of this correction☑



  

  BR[B
s
 → µµ] error:  systematics

Effect of B
s
 – B

s
 oscillations: BRexp = BRth

1
1−ΔΓs /2Γ s

= BRth × 1.09
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Implied systematic error comparable to f
Bs

 error

Albeit impact arguably small (~ O(1%)) 
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

Final answer:  full calculation

•

•
NLO EW: Bobeth et al., 1311.1348, PRD14

Initial-state
effect

EW final-state
effect

EW short-dist.
effect

SM pred.: Bobeth et al., 1311.0903, PRL14

See also NNLO QCD: Hermann et al., 1311.1347, JHEP13
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
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•
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D. Guadagnoli, B
s
 → µµ : theory

Implied systematic error comparable to f
Bs

 error

Albeit impact arguably small (~ O(1%)) 
in appropriate scheme
[see Buras, Girrbach, DG, Isidori, EPJC 13]

Final answer:  full calculation

•

•
NLO EW: Bobeth et al., 1311.1348, PRD14

All in all, theory (SM) ready to match expected experimental accuracy

Initial-state
effect

EW final-state
effect

EW short-dist.
effect

SM pred.: Bobeth et al., 1311.0903, PRL14

See also NNLO QCD: Hermann et al., 1311.1347, JHEP13
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See:    De Bruyn et al., PRL 12

Back to the initial-state systematic effect.  For general new physics, the correction factor becomes☑
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2 ) = BRexp
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See:    De Bruyn et al., PRL 12

Back to the initial-state systematic effect.  For general new physics, the correction factor becomes☑

BR th⋅(1+AΔΓ y s
1− y s

2 ) = BRexp

where

AΔΓ =
∣P∣2 cos (2ΦP) − ∣S∣2cos (2ΦS)

∣P∣2 + ∣S∣2

NP phases from P and S

Therefore

D. Guadagnoli, B
s
 → µµ : theory

normalized Wilson coeff

for O
A
  (= SM operator)

and O
P
 (and primed counterparts)

P
SM

 = 1

normalized Wilson coeff

for O
S

S
SM

 = 0

in the SM  AΔΓ = 1

if AΔΓ  ≠ 1, it's new physics

this NP could involve CPV or not

(and primed counterpart)

●

●

●
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Dunietz, Fleischer, Nierste, PRD 01;
De Bruyn et al., PRL 12 & PRD 12

☑ The crucial point is that  AΔΓ  can be extracted from

Scalar operators and their phases thru B
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Dunietz, Fleischer, Nierste, PRD 01;
De Bruyn et al., PRL 12 & PRD 12

☑ The crucial point is that  AΔΓ  can be extracted from

Scalar operators and their phases thru B
s
 → µµ

τμμ ≡
∫ t dt (Γ(B s(t )→μμ)+Γ(B̄s(t )→μμ))
∫dt (Γ(B s(t)→μμ)+Γ(B̄s(t )→μμ))

= known function of AΔΓ,   τBs
 and y

s

independently 
measurable

(After having measured AΔΓ    1)

To clarify whether it will be new CPV or not will call for 
measuring the time-dependent CP asymmetry

This quantity requires tagging & time-dependence 
measurements  in an ultra-rare decay

B
s
 → µµ

effective 
lifetime

D. Guadagnoli, B
s
 → µµ : theory
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Excellent probe of anomalous Z-to-quark couplings•

Outlook: The SM error is, and will remain, negligible w.r.t. exp error•

Scalar operators O
S,P

(' )  and their phases

Vector operators O
A
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Constraining power superior to Z-peak observables measured at LEP
(within reasonable flavor frameworks such as MFV or partial compositeness)

 DG, Isidori, 
PLB13
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